search
The following results are related to NEANIAS Atmospheric Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.

  • NEANIAS Atmospheric Research Community
  • Open Access
  • HAL-CEA

Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marchandise, Sandra; Robin, Eric; Ayrault, Sophie; Roy-Barman, Matthieu;

    International audience; The abundance, size and composition of micron-size U–Th–REE–Hf rich phases of marine clayey silt sediments from the Western Mediterranean Sea were determined using an automated scanning electron microscope equipped with an energy dispersive spectrometer. The minerals found in the sediment were monazite, allanite, florencite, xenotime and zircon. The size distribution and chemical composition of each phase were used to determine their contribution to the total content of the sediment in U, Th, REE, Y, Zr and Hf. Zircon accounts for most of the Zr and Hf of the sample. Xenotime and zircon account for most Y and HREE of the sample. However, the high Y–HREE–U–Th content of the zircons analyzed in this study (possibly due to xenotime overgrowth on zircon surface and alteration processes) contrasts with previous works and cannot be extended to any type of zircons. By contrast, only a small fraction (≈20–30%) of U, Th and LREE (such as Nd) are carried by U–Th–REE–Hf rich minerals (monazite mostly). It reflects the higher alterability of U–Th and LREE bearing phases compared to zircon and xenotime and implies that most U–Th and LREE are present in other phases at lower concentrations (possibly clays, organic matter or Fe–Mn oxides). The different size distributions of the different carriers can contribute to U–Th and LREE/HREE fractionation observed during the transport of these elements. Due to its very high physical and chemical resistance, zircon appears to be the main Hf carrier even in fine grained “zircon free type” sediments. By storing Lu and possibly releasing extremely radiogenic Hf, xenotime has an unforeseen role in the Lu–Hf systematics in marine sediment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geochimica et Cosmoc...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geochimica et Cosmochimica Acta
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geochimica et Cosmoc...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geochimica et Cosmochimica Acta
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Parrenin, Frédéric; Jouzel, Jean; Waelbroeck, Claire; Ritz, Catherine; +1 Authors

    International audience; Using the chronological information available in the Vostok records, we apply an inverse method to assess the quality of the Vostok glaciological timescale. The inversion procedure provides not only an optimized glaciological timescale and its confidence interval but also a reliable estimate of the duration of successive events. Our results highlight a disagreement between orbitally tuned and glaciological timescales below ∼2700 m (i.e., ∼250 kyr B.P., thousands of years before present). This disagreement could be caused by some discontinuity in the spatial variation of accumulation upstream of Vostok. Moreover, the stratigraphic datings of central Greenland ice cores (GRIP and GISP2) appear older than our optimized timescale for the late glacial. This underlines an unconsistency between the physical assumptions used to construct the Vostok glaciological timescale and the stratigraphic datings. The inverse method allows the first assessment of the evolution of the phase between Vostok climatic records and insolation. This phase significantly varies with time which gives a measure of the nonlinear character of the climatic system and suggests that the climatic response to orbital forcing is of different nature for glacial and interglacial periods. We confirm that the last interglacial, as recorded in the Vostok deuterium record, was long (16.2±2 kyr, thousands of years). However, midtransition of termination II occurred at 133.4±2.5 kyr BP, which does not support the recent claim for an earlier deglaciation. Finally, our study suggests that temperature changes are correctly estimated when using the spatial present‐day deuterium‐temperature relationship to interpret the Vostok deuterium record.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Geophysical Research Atmospheres
    Article . 2001 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    71
    citations71
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Geophysical Research Atmospheres
      Article . 2001 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andrii Elyiv; N. Clerc; Manolis Plionis; Jean Surdej; +7 Authors

    Our aim is to study the large-scale structure of different types of AGN using the medium-deep XMM-LSS survey. We measure the two-point angular correlation function of ~ 5700 and 2500 X-ray point-like sources over the ~ 11 sq. deg. XMM-LSS field in the soft (0.5-2 keV) and hard (2-10 keV) bands. For the conversion from the angular to the spatial correlation function we used the Limber integral equation and the luminosity-dependent density evolution model of the AGN X-ray luminosity function. We have found significant angular correlations with the power-law parameters gamma = 1.81 +/- 0.02, theta_0 = 1.3" +/- 0.2" for the soft, and gamma = 2.00 +/- 0.04, theta_0 = 7.3" +/- 1.0" for the hard bands. The amplitude of the correlation function w(theta) is higher in the hard than in the soft band for f_x < 10^-14 erg s^-1 cm^-2 and lower above this flux limit. We confirm that the clustering strength theta_0 grows with the flux limit of the sample, a trend which is also present in the amplitude of the spatial correlation function, but only for the soft band. In the hard band, it remains almost constant with r_0 = 10h^-1$ Mpc, irrespective of the flux limit. Our analysis of AGN subsamples with different hardness ratios shows that the sources with a hard-spectrum are more clustered than soft-spectrum ones. This result may be a hint that the two main types of AGN populate different environments. Finally, we find that our clustering results correspond to an X-ray selected AGN bias factor of ~ 2.5 for the soft-band sources (at a median z = 1.1) and ~ 3.3 for the hard-band sources (at a median z = 1), which translates into a host dark matter halo mass of ~ 10^13 h^-1 M_o and ~ 10^13.7 h^-1 M_o for the soft and hard bands, respectively. 14 pages, 27 figures, accepted for publication in Astronomy and Astrophysics

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.48550/arxiv...
    Article . 2011
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    Astronomy and Astrophysics
    Article . 2012 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    31
    citations31
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.48550/arxiv...
      Article . 2011
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      Astronomy and Astrophysics
      Article . 2012 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: A. Sylla; A. Sylla; E. Sanchez Gomez; J. Mignot; +2 Authors

    Abstract. We investigate the representation of the Canary upwelling system (CUS) in six global coupled climate models operating at high and standard resolution as part of the High Resolution Model Intercomparison Project (HighResMIP). For this project the resolution of the ocean and/or atmosphere components was increased. The models performance in reproducing the observed CUS is assessed in terms of various upwelling indices based on SST, wind stress and sea surface height, focussing on the effect of increasing model spatial resolution. Our analysis shows that an increase of spatial resolution depends on the sub-domain of the CUS considered. Strikingly, along the Iberian Peninsula region, which is the northernmost part of the CUS, the models show lower skill at higher resolution compared to their corresponding lower resolution version in both components for all the indices analyzed in this study. On the contrary, over the southernmost part of the CUS, from the north of Morocco to the Senegalese coast, the high ocean and atmosphere resolution models simulate a more realistic upwelling than the standard resolution models, which largely differ from the range of observational estimates. These results suggest that increasing resolution is not a sufficient condition to obtain a systematic improvement in the simulation of the upwelling phenomena as represented by the indices considered here, and other model improvements notably in terms of the physical parameterizations may also play a role.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geoscientific Model ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/gmd-20...
    Preprint . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geoscientific Model ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5194/gmd-20...
      Preprint . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      DOAJ
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Coudurier-Curveur, A.; Tapponnier, P.; Okal, E.; van Der Woerd, J.; +5 Authors

    Although the M=w8.7, 1950 Assam earthquake endures as the largest continental earthquake ever recorded, its exact source and mechanism remain contentious. In this paper, we jointly analyze the spatial distributions of reappraised aftershocks and landslides, and provide new field evidence for its hitherto unknown surface rupture extent along the Mishmi and Abor Hills. Within both mountain fronts, relocated aftershocks and fresh landslide scars spread over an area of ≈330 km by 100 km. The former are more abundant in the Abor Hills while the later mostly affect the front of the Mishmi Hills. We found steep seismic scarps cutting across fluvial deposits and bounding recently uplifted terraces, some of which less than two thousand years or even a couple centuries old, at several sites along both mountain fronts. They likely attest to a minimum 200 km-long 1950 surface rupture on both the Mishmi and Main Himalayan Frontal Thrusts (MT and MFT, respectively), crossing the East Himalayan Syntaxis. At two key sites (Wakro and Pasighat), co-seismic surface throw appears to have been over twice as large on the MT as on the MFT (7.6 ± 0.2 m vs. >2.6 ± 0.1 m), in keeping with the relative, average mountain heights (3200 m vs. 1400 m), mapped landslide scar numbers (182 vs. 96), and average thrust dips (25–28° vs. 13–15°) consistent with relocated aftershocks depths. Corresponding average slip amounts at depth would have been ≈17 and ≈11 m on the MT and MFT, respectively, while surface slip at Wakro might have reached ≈34 m. Note that this amount of superficial slip would be out of reach using classic paleo-seismological trenching to reconstruct paleo-earthquake history. Most of the 1950 first arrivals fit with a composite focal mechanism co-involving the two shallow-dipping thrust planes. Their intersection lies roughly beneath the Dibang Valley, implying forced slip parallel to GPS vectors across the East Himalayan Syntaxis. Successive, near-identical, terrace uplifts at Wakro suggest near-characteristic slip during the last two surface rupturing earthquakes, while terrace boulder ages may be taken to imply bi-millennial return time for 1950-size events. As in Nepal, East-Himalayan mega-quakes are not blind and release most of the elastic, interseismic shortening that accumulates across the range. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Published version

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth and Planetary ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Earth and Planetary Science Letters
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Digital Repository of NTU
    Article . 2020
    License: © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
    Hal-Diderot
    Article . 2020
    License: CC BY ND
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    51
    citations51
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth and Planetary ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Earth and Planetary Science Letters
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Digital Repository of NTU
      Article . 2020
      License: © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
      Hal-Diderot
      Article . 2020
      License: CC BY ND
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bruno Lansard; Christophe Rabouille; Lionel Denis; Christian Grenz;

    The influence of riverine inputs on biogeochemical cycling and organic matter recycling in sediments on the continental shelf off the Rhone River mouth (NW Mediterranean Sea) was investigated by measuring sediment oxygen uptake rates using a combination of in situ and laboratory techniques. Four stations were investigated during two cruises in June 2001 and June 2002, with depths ranging from 9 to 192 m and over a distance to the Rhone River mouth ranging from 4 to 36 km. Diffusive oxygen uptake (DOU) rates were determined using an in situ sediment microprofiler and total oxygen uptake (TOU) rates were measured using sediment core incubations. There was good agreement between these two techniques which indicates that the non-diffusive fraction of the oxygen flux was minimal at the investigated stations. DOU rates ranged from 3.7 +/- 0.4 mmol O-2 m(-2) d(-1) at the continental shelf break to 19.3 +/- 0.5 mmol O-2 m(-2) d(-1) in front of the Rhone River mouth. Sediment oxygen uptake rates mostly decreased with increasing depth and with distance from the Rhone mouth. The highest oxygen uptake rate was observed at 63 m on the Rhone prodelta, corresponding to intense remineralization of organic matter. This oxygen uptake rate was much larger than expected for the increasing bathymetry, which indicates that biogeochemical cycles and benthic deposition are largely influenced by the Rhone River inputs. This functioning was also supported by the detailed spatial distribution of total organic carbon (TOC), total nitrogen (TN) and C/N atomic ratio in surficial sediments. Sediments of the Rhone prodelta are enriched in organic carbon (2-2.2%) relative to the continental shelf sediments (< 1%) and showed C/N ratios exceeding Redfield stoichiometry for fresh marine organic matter. A positive exponential correlation was found between DOU and TOC contents (r(2) = 0.98, n = 4). South-westward of the Rhone River mouth, sediments contained highly degraded organic matter of both terrestrial and marine origin, due to direct inputs from the Rhone River, sedimentation of marine organic matter and organic material redeposition after resuspension events. (c) 2008 Elsevier Ltd. All rights reserved.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horizon / Pleins tex...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horizon / Pleins textes
    Other literature type . 2008
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Continental Shelf Research
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2008
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stephen R. Rintoul; Steven L. Chown; Robert M. DeConto; Matthew H. England; +5 Authors

    We present two narratives on the future of Antarctica and the Southern Ocean, from the perspective of an observer looking back from 2070. In the first scenario, greenhouse gas emissions remained unchecked, the climate continued to warm, and the policy response was ineffective; this had large ramifications in Antarctica and the Southern Ocean, with worldwide impacts. In the second scenario, ambitious action was taken to limit greenhouse gas emissions and to establish policies that reduced anthropogenic pressure on the environment, slowing the rate of change in Antarctica. Choices made in the next decade will determine what trajectory is realized.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Spiral - Imperial Co...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Nature
    Article . 2017
    Hal-Diderot
    Article . 2018
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    162
    citations162
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility115
    visibilityviews115
    downloaddownloads238
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Spiral - Imperial Co...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Nature
      Article . 2017
      Hal-Diderot
      Article . 2018
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Christo Buizert; Vasileios Gkinis; Jeffrey P. Severinghaus; Feng He; +10 Authors

    Old and older, cold and colder Greenland surface air temperatures changed dramatically during the last deglaciation. The exact amount is unknown, which makes it difficult to understand what caused those changes. Buizert et al. report temperature reconstructions for the period from 19,000 to 10,000 years before the present from three different locations in Greenland and interpret them with a climate model (see the Perspective by Sime). They provide the broad geographic pattern of temperature variability and infer the mechanisms of the changes and their seasonality, which differ in important ways from the traditional view. Science, this issue p. 1177 ; see also p. 1116

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Science
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Science
    Article . 2014 . Peer-reviewed
    Hal-Diderot
    Article . 2014
    Data sources: Hal-Diderot
    Science
    Article . 2014
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    214
    citations214
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Science
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Science
      Article . 2014 . Peer-reviewed
      Hal-Diderot
      Article . 2014
      Data sources: Hal-Diderot
      Science
      Article . 2014
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Junwen Wu; Christophe Rabouille; Sabine Charmasson; Jean Louis Reyss; +1 Authors

    Abstract 7Be and 234Thex activities were determined in sediment cores off the Rhone River mouth (Gulf of Lions), in order to trace the initial transport and deposition of riverine suspended particulate matter (SPM) and evaluate the impact of flood events through 7 cruises carried out between 2007 and 2008. Consistently high 7Be and 234Thex inventories of 2000–3000 mBq cm−2 and 3000–5000 mBq cm−2, respectively, were observed within a ~5 km radius off the Rhone River mouth. Their spatial distributions showed a gradual decrease with increasing distance from the Rhone River mouth, and the decrease in 7Be was more pronounced than that of 234Thex, indicating that recent riverine SPM is rapidly deposited in the area located near the river mouth. This area is also characterized by high accumulation rates determined using 137Cs or 210Pbex. Both 7Be and 234Thex inventories increased in 2008 compared to 2007, and are correlated to the cumulated SPM flux for normal and flood discharge. Moreover, the 7Be/234Thex inventory ratio appears to be a potential tracer to identify the dominant influence of recently deposited particles between terrestrial and marine waters. This ratio provides an effective tool to assess river and marine influence: Zone I at a distance inferior to 3.0 km, with 7Be/234Thex inventory ratio over 0.50 (surface area near river mouth ~ 7 km2) is dominated by riverine influence; in contrast, Zone III at a distance superior to 8.5 km, with 7Be/234Thex inventory ratio less than 0.10 (surface area off river mouth beyond 150 km2) is predominantly under a marine influence. In between, an intermediate area (Zone II at a distance between 3.0 and 8.5 km, with 7Be/234Thex inventory ratios between 0.10 and 0.50) displays a mixed influence. This zoning could help in further understanding the spreading of particle-reactive contaminants and its initial sedimentary deposition in the Gulf of Lions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Continental Shelf Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Continental Shelf Research
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2018
    License: CC BY NC ND
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Continental Shelf Re...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Continental Shelf Research
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Hal-Diderot
      Article . 2018
      License: CC BY NC ND
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kissel, C.; Laj, C.; Jian, Z.; Wang, P.; +2 Authors

    Abstract The South China Sea, located at the transition between the Pacific and the Indian Ocean, receives every year, mainly during the rain season, enormous amounts of river sediments originating from the erosion/weathering of rocks in the catchment basins. At sea, these sediments are carried by different water masses to their deposition site and they constitute a unique archive for past environmental studies in this region. The magnetic fraction of deep-sea sediments, though forming a minority in volume, provides incredibly valuable information for paleoceanographic reconstructions, as long as its provenance and source-to-sink processes are well constrained. After a brief description of the climatic, sedimentological and oceanographic context of the South China Sea (SCS), a review of the information available so far in the literature about the magnetic properties of SCS sediments is presented. It shows a large variety of interpretations/conclusions that finally results in a rather unclear picture. Because in such a context, the characterization of the sediment at the source is critical, the magnetic properties recently obtained from a set of samples from rivers and marine surface sediments are summarized to describe the present day situation. They are then used to interpret paleorecords from a set of seven marine cores distributed from the southern to the northern basins at different water depths and all covering at least the last climatic cycle. The results reported here for the first time suggest that the magnetic mineralogy remains rather stable in time on land and that its time and spatial distribution at sea is an interplay of changes in sea level and deep-sea circulation. During low sea level periods, bottom deep-sea circulation is weak and the deposited sediment originates from the proximal rivers. On the contrary, during high sea level, the circulation is enhanced, transporting more sediment most likely from Taiwan and Luzon, to the northwestern part of the SCS and also, in smaller proportion, to the southern basin where it mixes with the local river-borne sediment. By comparing the two longest records, we observe that this pattern is repeated over the last 900 ka. Superimposed to the 100 kyr cyclicity we also observe a longer-term evolution with a maximum in the bottom current strength around 500 ka coinciding with global changes in the deep ocean circulation and carbon cycle. These new results, based on a wide spectrum of magnetic properties of numerous marine sedimentary cores from the SCS, show that the magnetic fraction yields important insights into past changes of the sedimentary pathways, in particular the dynamic of the deep-sea circulation, depending on the global climatic context.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Quaternary Science R...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Quaternary Science Reviews
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Quaternary Science R...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Quaternary Science Reviews
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to NEANIAS Atmospheric Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marchandise, Sandra; Robin, Eric; Ayrault, Sophie; Roy-Barman, Matthieu;

    International audience; The abundance, size and composition of micron-size U–Th–REE–Hf rich phases of marine clayey silt sediments from the Western Mediterranean Sea were determined using an automated scanning electron microscope equipped with an energy dispersive spectrometer. The minerals found in the sediment were monazite, allanite, florencite, xenotime and zircon. The size distribution and chemical composition of each phase were used to determine their contribution to the total content of the sediment in U, Th, REE, Y, Zr and Hf. Zircon accounts for most of the Zr and Hf of the sample. Xenotime and zircon account for most Y and HREE of the sample. However, the high Y–HREE–U–Th content of the zircons analyzed in this study (possibly due to xenotime overgrowth on zircon surface and alteration processes) contrasts with previous works and cannot be extended to any type of zircons. By contrast, only a small fraction (≈20–30%) of U, Th and LREE (such as Nd) are carried by U–Th–REE–Hf rich minerals (monazite mostly). It reflects the higher alterability of U–Th and LREE bearing phases compared to zircon and xenotime and implies that most U–Th and LREE are present in other phases at lower concentrations (possibly clays, organic matter or Fe–Mn oxides). The different size distributions of the different carriers can contribute to U–Th and LREE/HREE fractionation observed during the transport of these elements. Due to its very high physical and chemical resistance, zircon appears to be the main Hf carrier even in fine grained “zircon free type” sediments. By storing Lu and possibly releasing extremely radiogenic Hf, xenotime has an unforeseen role in the Lu–Hf systematics in marine sediment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geochimica et Cosmoc...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geochimica et Cosmochimica Acta
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geochimica et Cosmoc...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geochimica et Cosmochimica Acta
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Parrenin, Frédéric; Jouzel, Jean; Waelbroeck, Claire; Ritz, Catherine; +1 Authors

    International audience; Using the chronological information available in the Vostok records, we apply an inverse method to assess the quality of the Vostok glaciological timescale. The inversion procedure provides not only an optimized glaciological timescale and its confidence interval but also a reliable estimate of the duration of successive events. Our results highlight a disagreement between orbitally tuned and glaciological timescales below ∼2700 m (i.e., ∼250 kyr B.P., thousands of years before present). This disagreement could be caused by some discontinuity in the spatial variation of accumulation upstream of Vostok. Moreover, the stratigraphic datings of central Greenland ice cores (GRIP and GISP2) appear older than our optimized timescale for the late glacial. This underlines an unconsistency between the physical assumptions used to construct the Vostok glaciological timescale and the stratigraphic datings. The inverse method allows the first assessment of the evolution of the phase between Vostok climatic records and insolation. This phase significantly varies with time which gives a measure of the nonlinear character of the climatic system and suggests that the climatic response to orbital forcing is of different nature for glacial and interglacial periods. We confirm that the last interglacial, as recorded in the Vostok deuterium record, was long (16.2±2 kyr, thousands of years). However, midtransition of termination II occurred at 133.4±2.5 kyr BP, which does not support the recent claim for an earlier deglaciation. Finally, our study suggests that temperature changes are correctly estimated when using the spatial present‐day deuterium‐temperature relationship to interpret the Vostok deuterium record.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Geophysical Research Atmospheres
    Article . 2001 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    71
    citations71
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Geophysical Research Atmospheres
      Article . 2001 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andrii Elyiv; N. Clerc; Manolis Plionis; Jean Surdej; +7 Authors

    Our aim is to study the large-scale structure of different types of AGN using the medium-deep XMM-LSS survey. We measure the two-point angular correlation function of ~ 5700 and 2500 X-ray point-like sources over the ~ 11 sq. deg. XMM-LSS field in the soft (0.5-2 keV) and hard (2-10 keV) bands. For the conversion from the angular to the spatial correlation function we used the Limber integral equation and the luminosity-dependent density evolution model of the AGN X-ray luminosity function. We have found significant angular correlations with the power-law parameters gamma = 1.81 +/- 0.02, theta_0 = 1.3" +/- 0.2" for the soft, and gamma = 2.00 +/- 0.04, theta_0 = 7.3" +/- 1.0" for the hard bands. The amplitude of the correlation function w(theta) is higher in the hard than in the soft band for f_x < 10^-14 erg s^-1 cm^-2 and lower above this flux limit. We confirm that the clustering strength theta_0 grows with the flux limit of the sample, a trend which is also present in the amplitude of the spatial correlation function, but only for the soft band. In the hard band, it remains almost constant with r_0 = 10h^-1$ Mpc, irrespective of the flux limit. Our analysis of AGN subsamples with different hardness ratios shows that the sources with a hard-spectrum are more clustered than soft-spectrum ones. This result may be a hint that the two main types of AGN populate different environments. Finally, we find that our clustering results correspond to an X-ray selected AGN bias factor of ~ 2.5 for the soft-band sources (at a median z = 1.1) and ~ 3.3 for the hard-band sources (at a median z = 1), which translates into a host dark matter halo mass of ~ 10^13 h^-1 M_o and ~ 10^13.7 h^-1 M_o for the soft and hard bands, respectively. 14 pages, 27 figures, accepted for publication in Astronomy and Astrophysics

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.48550/arxiv...
    Article . 2011
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    Astronomy and Astrophysics
    Article . 2012 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    31
    citations31
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.48550/arxiv...
      Article . 2011
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      Astronomy and Astrophysics
      Article . 2012 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: A. Sylla; A. Sylla; E. Sanchez Gomez; J. Mignot; +2 Authors

    Abstract. We investigate the representation of the Canary upwelling system (CUS) in six global coupled climate models operating at high and standard resolution as part of the High Resolution Model Intercomparison Project (HighResMIP). For this project the resolution of the ocean and/or atmosphere components was increased. The models performance in reproducing the observed CUS is assessed in terms of various upwelling indices based on SST, wind stress and sea surface height, focussing on the effect of increasing model spatial resolution. Our analysis shows that an increase of spatial resolution depends on the sub-domain of the CUS considered. Strikingly, along the Iberian Peninsula region, which is the northernmost part of the CUS, the models show lower skill at higher resolution compared to their corresponding lower resolution version in both components for all the indices analyzed in this study. On the contrary, over the southernmost part of the CUS, from the north of Morocco to the Senegalese coast, the high ocean and atmosphere resolution models simulate a more realistic upwelling than the standard resolution models, which largely differ from the range of observational estimates. These results suggest that increasing resolution is not a sufficient condition to obtain a systematic improvement in the simulation of the upwelling phenomena as represented by the indices considered here, and other model improvements notably in terms of the physical parameterizations may also play a role.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geoscientific Model ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/gmd-20...
    Preprint . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geoscientific Model ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5194/gmd-20...
      Preprint . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      DOAJ
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Coudurier-Curveur, A.; Tapponnier, P.; Okal, E.; van Der Woerd, J.; +5 Authors

    Although the M=w8.7, 1950 Assam earthquake endures as the largest continental earthquake ever recorded, its exact source and mechanism remain contentious. In this paper, we jointly analyze the spatial distributions of reappraised aftershocks and landslides, and provide new field evidence for its hitherto unknown surface rupture extent along the Mishmi and Abor Hills. Within both mountain fronts, relocated aftershocks and fresh landslide scars spread over an area of ≈330 km by 100 km. The former are more abundant in the Abor Hills while the later mostly affect the front of the Mishmi Hills. We found steep seismic scarps cutting across fluvial deposits and bounding recently uplifted terraces, some of which less than two thousand years or even a couple centuries old, at several sites along both mountain fronts. They likely attest to a minimum 200 km-long 1950 surface rupture on both the Mishmi and Main Himalayan Frontal Thrusts (MT and MFT, respectively), crossing the East Himalayan Syntaxis. At two key sites (Wakro and Pasighat), co-seismic surface throw appears to have been over twice as large on the MT as on the MFT (7.6 ± 0.2 m vs. >2.6 ± 0.1 m), in keeping with the relative, average mountain heights (3200 m vs. 1400 m), mapped landslide scar numbers (182 vs. 96), and average thrust dips (25–28° vs. 13–15°) consistent with relocated aftershocks depths. Corresponding average slip amounts at depth would have been ≈17 and ≈11 m on the MT and MFT, respectively, while surface slip at Wakro might have reached ≈34 m. Note that this amount of superficial slip would be out of reach using classic paleo-seismological trenching to reconstruct paleo-earthquake history. Most of the 1950 first arrivals fit with a composite focal mechanism co-involving the two shallow-dipping thrust planes. Their intersection lies roughly beneath the Dibang Valley, implying forced slip parallel to GPS vectors across the East Himalayan Syntaxis. Successive, near-identical, terrace uplifts at Wakro suggest near-characteristic slip during the last two surface rupturing earthquakes, while terrace boulder ages may be taken to imply bi-millennial return time for 1950-size events. As in Nepal, East-Himalayan mega-quakes are not blind and release most of the elastic, interseismic shortening that accumulates across the range. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Published version

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth and Planetary ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Earth and Planetary Science Letters
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Digital Repository of NTU
    Article . 2020
    License: © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
    Hal-Diderot
    Article . 2020
    License: CC BY ND
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    51
    citations51
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth and Planetary ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Earth and Planetary Science Letters
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Digital Repository of NTU
      Article . 2020
      License: © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
      Hal-Diderot
      Article . 2020
      License: CC BY ND
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bruno Lansard; Christophe Rabouille; Lionel Denis; Christian Grenz;

    The influence of riverine inputs on biogeochemical cycling and organic matter recycling in sediments on the continental shelf off the Rhone River mouth (NW Mediterranean Sea) was investigated by measuring sediment oxygen uptake rates using a combination of in situ and laboratory techniques. Four stations were investigated during two cruises in June 2001 and June 2002, with depths ranging from 9 to 192 m and over a distance to the Rhone River mouth ranging from 4 to 36 km. Diffusive oxygen uptake (DOU) rates were determined using an in situ sediment microprofiler and total oxygen uptake (TOU) rates were measured using sediment core incubations. There was good agreement between these two techniques which indicates that the non-diffusive fraction of the oxygen flux was minimal at the investigated stations. DOU rates ranged from 3.7 +/- 0.4 mmol O-2 m(-2) d(-1) at the continental shelf break to 19.3 +/- 0.5 mmol O-2 m(-2) d(-1) in front of the Rhone River mouth. Sediment oxygen uptake rates mostly decreased with increasing depth and with distance from the Rhone mouth. The highest oxygen uptake rate was observed at 63 m on the Rhone prodelta, corresponding to intense remineralization of organic matter. This oxygen uptake rate was much larger than expected for the increasing bathymetry, which indicates that biogeochemical cycles and benthic deposition are largely influenced by the Rhone River inputs. This functioning was also supported by the detailed spatial distribution of total organic carbon (TOC), total nitrogen (TN) and C/N atomic ratio in surficial sediments. Sediments of the Rhone prodelta are enriched in organic carbon (2-2.2%) relative to the continental shelf sediments (< 1%) and showed C/N ratios exceeding Redfield stoichiometry for fresh marine organic matter. A positive exponential correlation was found between DOU and TOC contents (r(2) = 0.98, n = 4). South-westward of the Rhone River mouth, sediments contained highly degraded organic matter of both terrestrial and marine origin, due to direct inputs from the Rhone River, sedimentation of marine organic matter and organic material redeposition after resuspension events. (c) 2008 Elsevier Ltd. All rights reserved.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horizon / Pleins tex...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horizon / Pleins textes
    Other literature type . 2008
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Continental Shelf Research
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2008
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stephen R. Rintoul; Steven L. Chown; Robert M. DeConto; Matthew H. England; +5 Authors

    We present two narratives on the future of Antarctica and the Southern Ocean, from the perspective of an observer looking back from 2070. In the first scenario, greenhouse gas emissions remained unchecked, the climate continued to warm, and the policy response was ineffective; this had large ramifications in Antarctica and the Southern Ocean, with worldwide impacts. In the second scenario, ambitious action was taken to limit greenhouse gas emissions and to establish policies that reduced anthropogenic pressure on the environment, slowing the rate of change in Antarctica. Choices made in the next decade will determine what trajectory is realized.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Spiral - Imperial Co...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Nature
    Article . 2017
    Hal-Diderot
    Article . 2018
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    162
    citations162
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility115
    visibilityviews115
    downloaddownloads238
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Spiral - Imperial Co...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Nature
      Article . 2017
      Hal-Diderot
      Article . 2018
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Christo Buizert; Vasileios Gkinis; Jeffrey P. Severinghaus; Feng He; +10 Authors

    Old and older, cold and colder Greenland surface air temperatures changed dramatically during the last deglaciation. The exact amount is unknown, which makes it difficult to understand what caused those changes. Buizert et al. report temperature reconstructions for the period from 19,000 to 10,000 years before the present from three different locations in Greenland and interpret them with a climate model (see the Perspective by Sime). They provide the broad geographic pattern of temperature variability and infer the mechanisms of the changes and their seasonality, which differ in important ways from the traditional view. Science, this issue p. 1177 ; see also p. 1116

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Science
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Science
    Article . 2014 . Peer-reviewed
    Hal-Diderot
    Article . 2014
    Data sources: Hal-Diderot
    Science
    Article . 2014
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    214
    citations214
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ eScholarship - Unive...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Science
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Science
      Article . 2014 . Peer-reviewed
      Hal-Diderot
      Article . 2014
      Data sources: Hal-Diderot
      Science
      Article . 2014
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Junwen Wu; Christophe Rabouille; Sabine Charmasson; Jean Louis Reyss; +1 Authors

    Abstract 7Be and 234Thex activities were determined in sediment cores off the Rhone River mouth (Gulf of Lions), in order to trace the initial transport and deposition of riverine suspended particulate matter (SPM) and evaluate the impact of flood events through 7 cruises carried out between 2007 and 2008. Consistently high 7Be and 234Thex inventories of 2000–3000 mBq cm−2 and 3000–5000 mBq cm−2, respectively, were observed within a ~5 km radius off the Rhone River mouth. Their spatial distributions showed a gradual decrease with increasing distance from the Rhone River mouth, and the decrease in 7Be was more pronounced than that of 234Thex, indicating that recent riverine SPM is rapidly deposited in the area located near the river mouth. This area is also characterized by high accumulation rates determined using 137Cs or 210Pbex. Both 7Be and 234Thex inventories increased in 2008 compared to 2007, and are correlated to the cumulated SPM flux for normal and flood discharge. Moreover, the 7Be/234Thex inventory ratio appears to be a potential tracer to identify the dominant influence of recently deposited particles between terrestrial and marine waters. This ratio provides an effective tool to assess river and marine influence: Zone I at a distance inferior to 3.0 km, with 7Be/234Thex inventory ratio over 0.50 (surface area near river mouth ~ 7 km2) is dominated by riverine influence; in contrast, Zone III at a distance superior to 8.5 km, with 7Be/234Thex inventory ratio less than 0.10 (surface area off river mouth beyond 150 km2) is predominantly under a marine influence. In between, an intermediate area (Zone II at a distance between 3.0 and 8.5 km, with 7Be/234Thex inventory ratios between 0.10 and 0.50) displays a mixed influence. This zoning could help in further understanding the spreading of particle-reactive contaminants and its initial sedimentary deposition in the Gulf of Lions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Continental Shelf Re...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Continental Shelf Research
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2018
    License: CC BY NC ND
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Continental Shelf Re...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Continental Shelf Research
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Hal-Diderot
      Article . 2018
      License: CC BY NC ND
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kissel, C.; Laj, C.; Jian, Z.; Wang, P.; +2 Authors

    Abstract The South China Sea, located at the transition between the Pacific and the Indian Ocean, receives every year, mainly during the rain season, enormous amounts of river sediments originating from the erosion/weathering of rocks in the catchment basins. At sea, these sediments are carried by different water masses to their deposition site and they constitute a unique archive for past environmental studies in this region. The magnetic fraction of deep-sea sediments, though forming a minority in volume, provides incredibly valuable information for paleoceanographic reconstructions, as long as its provenance and source-to-sink processes are well constrained. After a brief description of the climatic, sedimentological and oceanographic context of the South China Sea (SCS), a review of the information available so far in the literature about the magnetic properties of SCS sediments is presented. It shows a large variety of interpretations/conclusions that finally results in a rather unclear picture. Because in such a context, the characterization of the sediment at the source is critical, the magnetic properties recently obtained from a set of samples from rivers and marine surface sediments are summarized to describe the present day situation. They are then used to interpret paleorecords from a set of seven marine cores distributed from the southern to the northern basins at different water depths and all covering at least the last climatic cycle. The results reported here for the first time suggest that the magnetic mineralogy remains rather stable in time on land and that its time and spatial distribution at sea is an interplay of changes in sea level and deep-sea circulation. During low sea level periods, bottom deep-sea circulation is weak and the deposited sediment originates from the proximal rivers. On the contrary, during high sea level, the circulation is enhanced, transporting more sediment most likely from Taiwan and Luzon, to the northwestern part of the SCS and also, in smaller proportion, to the southern basin where it mixes with the local river-borne sediment. By comparing the two longest records, we observe that this pattern is repeated over the last 900 ka. Superimposed to the 100 kyr cyclicity we also observe a longer-term evolution with a maximum in the bottom current strength around 500 ka coinciding with global changes in the deep ocean circulation and carbon cycle. These new results, based on a wide spectrum of magnetic properties of numerous marine sedimentary cores from the SCS, show that the magnetic fraction yields important insights into past changes of the sedimentary pathways, in particular the dynamic of the deep-sea circulation, depending on the global climatic context.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Quaternary Science R...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Quaternary Science Reviews
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Quaternary Science R...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Quaternary Science Reviews
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.