- home
- Search
70 Research products, page 1 of 7
Loading
- Other research product . Collection . 2020Open Access EnglishAuthors:Westerhold, Thomas;Westerhold, Thomas;Publisher: PANGAEAProject: EC | TiPES (820970), EC | MIONIÑO (796220), EC | EARTHSEQUENCING (617462)
Much of our understanding of Earth's past climate states comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, major intervals in those records that lack the temporal resolution and/or age control required to identify climate forcing and feedback mechanisms. Here we document 66 million years of global climate by a new high-fidelity Cenozoic global reference benthic carbon and oxygen isotope dataset (CENOGRID). Using recurrence analysis, we find that on timescales of millions of years Earth's climate can be grouped into Hothouse, Warmhouse, Coolhouse and Icehouse states separated by transitions related to changing greenhouse gas levels and the growth of polar ice sheets. Each Cenozoic climate state is paced by orbital cycles, but the response to radiative forcing is state dependent.
- Other research product . Collection . 2021Open Access EnglishAuthors:Van Audenhaege, Loïc; Broad, Emmeline; Hendry, Katharine R; Huvenne, Veerle A I;Van Audenhaege, Loïc; Broad, Emmeline; Hendry, Katharine R; Huvenne, Veerle A I;Publisher: PANGAEAProject: EC | iAtlantic (818123), EC | ICY-LAB (678371)
We used a multibeam echosounder (Reson7125) front-mounted onto the ROV Isis (Dive D333, DY081 expedition) to map the terrain of a vertical feature marking the edge of a deep-sea glacial trough (Labrador Sea, [63°51.9'N, 53°16.9'W, depth: 650 to 800 m]). After correction of the ROV navigation (i.e. merging of USBL and DVL), bathymetry [m] and backscatter [nominal unit] were extracted at a resolution of 0.3 m and different terrain descriptors were computed: Slope, Bathymetric Position Index (BPI), Terrain Ruggedness Index, Roughness, Mean and Gaussian curvatures and orientations (Northness and Eastness), at scales of 0.9, 3 and 9 m. Using a Principal Component Analysis (PCA), the terrain descriptors enabled to retrieve 4 terrain clusters and their associated confusion index, to investigate the spatial heterogeneity of the terrain. This approach also underlined the presence of geomorphic features in the wall terrain. The extraction of the backscatter intensity for the first time considering vertical terrains, opens space for further acquisition and processing development. Using photographs collected by the ROV Isis (Dive D334, DY081 expedition), epibenthic fauna was annotated. Each image was linked to a terrain cluster in the 3D space and pooled into 20-m² bins of images. A Bray-Curtis dissimilarity matrix was constructed from morphospecies abundances. This enabled to test for differences of assemblage composition among clusters. Few species appeared more abundant in particular clusters such as L. pertusa in high-roughness cluster. However, nMDS suggested differences in assemblage composition but these dissimilarities were not strongly delineated. Whereas the design of this study may have limited distinctive differences among assemblages, this shows the potential of this cost-effective method of top-down habitat mapping to be applied in undersampled benthic habitat in order to provide a priori knwoledge for defining appropriate sampling design.
- Open Access EnglishAuthors:De Clippele, Laurence Helene; Huvenne, Veerle A I; Molodtsova, Tina; Roberts, J Murray;De Clippele, Laurence Helene; Huvenne, Veerle A I; Molodtsova, Tina; Roberts, J Murray;Publisher: PANGAEA - Data Publisher for Earth & Environmental ScienceProject: EC | ATLAS (678760)
These datasets were used to describe the diversity, ecology and role of non-scleractinian corals on scleractinian cold-water coral carbonate mounds in the Logachev Mound Province, Rockall Bank, NE Atlantic. Cold-water coral carbonate mounds, created by framework-building scleractinian corals, are also important habitats for non-scleractinian corals, whose ecology and role are understudied in deep-sea environments. In total ten non-scleractinian species were identified, which were mapped out along eight ROV video transects. Eight species were identified as black corals (three belonging to the family Schizopathidae, one each to the Leiopathidae, Cladopathidae, and Antipathidae and two to an unknown family) and two as gorgonians (Isididae and Plexauridae). The most abundant species were Leiopathes sp. and Parantipathes sp. 2. Areas with a high diversity of non-scleractinian corals are interpreted to offer sufficient food, weak inter-species competition and the presence of heterogeneous and hard settlement substrates. A difference in the density and occurrence of small vs. large colonies of Leiopathes sp. was also observed, which is likely related to a difference in the stability of the substrate they choose for settlement. Non-scleractinian corals, especially black corals, are an important habitat for crabs, crinoids, and shrimps in the Logachev Mound Province.
- Other research product . Collection . 2020Open Access EnglishAuthors:Tessin, Allyson; März, Christian; Kędra, Monika; Matthiessen, Jens; Morata, Nathalie; Nairn, Michael; O'Regan, Matthew; Peeken, Ilka;Tessin, Allyson; März, Christian; Kędra, Monika; Matthiessen, Jens; Morata, Nathalie; Nairn, Michael; O'Regan, Matthew; Peeken, Ilka;Publisher: PANGAEAProject: EC | PaNDA (709175)
The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 μmol m−2 yr−1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736–2449 μmol m−2 yr−1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin.
- Other research product . CollectionOpen AccessAuthors:Oliver S. Ashford; Andrew J. Kenny; Christopher R. S. Barrio Froján; Michael B. Bonsall; Tammy Horton; Angelika Brandt; Graham J. Bird; Sarah Gerken; Alex D. Rogers;Oliver S. Ashford; Andrew J. Kenny; Christopher R. S. Barrio Froján; Michael B. Bonsall; Tammy Horton; Angelika Brandt; Graham J. Bird; Sarah Gerken; Alex D. Rogers;Publisher: FigshareProject: EC | ATLAS (678760)
An understanding of the balance of interspecific competition and the physical environment in structuring organismal communities is crucial because those communities structured primarily by their physical environment typically exhibit greater sensitivity to environmental change than those structured predominantly by competitive interactions. Here, using detailed phylogenetic and functional information, we investigate this question in macrofaunal assemblages from Northwest Atlantic Ocean continental slopes, a high seas region projected to experience substantial environmental change through the current century. We demonstrate assemblages to be both phylogenetically and functionally under-dispersed and thus conclude that the physical environment, not competition, may dominate in structuring deep-ocean communities. Further, we find temperature and bottom trawling intensity to be amongst the environmental factors significantly related to assemblage diversity. These results hint that deep-ocean communities are highly sensitive to their physical environment and vulnerable to environmental perturbation, including by direct disturbance through fishing, and indirectly through the changes brought about by climate change.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Collection . 2016Open AccessAuthors:Fox, Alan D.; Lea-Anne Henry; Corne, David W.; J. Murray Roberts;Fox, Alan D.; Lea-Anne Henry; Corne, David W.; J. Murray Roberts;Publisher: FigshareProject: UKRI | Advanced environmental mo... (NE/M007235/1), EC | ATLAS (678760), UKRI | Where did all the CO2 go?... (NE/J021121/1)
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
- Other research product . Collection . 2020Open Access EnglishAuthors:Liu, Sisi; Stoof-Leichsenring, Kathleen Rosmarie; Kruse, Stefan; Pestryakova, Luidmila A; Herzschuh, Ulrike;Liu, Sisi; Stoof-Leichsenring, Kathleen Rosmarie; Kruse, Stefan; Pestryakova, Luidmila A; Herzschuh, Ulrike;Publisher: PANGAEAProject: EC | GlacialLegacy (772852)
Here, we provide the raw pollen data archived in three Siberian lake sediment cores spanning the mid-Holocene to the present (7.6-0 cal ka BP), from northern typical tundra to southern open larch forest in the Omoloy region. There are three cores: 1. 14-OM-20B, Lat. / °: 70.53, Lon. / °: 132.91, Ele. / m a.s.l.: 52, Modern vegetation: open larch forest, Lake area / km2: 0.26, Maximal depth / m: 3.4 2. 14-OM-02B, Lat. / °: 70.72, Lon. / °: 132.67, Ele. / m a.s.l.: 58, Modern vegetation: forest tundra, Lake area / km2: 0.08, Maximal depth / m: 3.5 3. 14-OM-12A, Lat. / °: 70.96, Lon. / °: 132.57, Ele. / m a.s.l.: 60, Modern vegetation: tundra, Lake area / km2: 0.09, Maximal depth / m: 4.5 Three lake sediment cores, 14OM12A (33 cm long), 14OM02B (49.5 cm long) and 14OM20B (86 cm long), were recovered from three sites using a UWITEC gravity corer (6 cm internal diameter) equipped with a hammer tool in July 2014. From the three cores, 16 bulk organic carbon samples were selected because of the lack of macrofossil remains and radiocarbon dated using accelerator mass spectrometry (AMS) at Poznań radiocarbon laboratory of Adam Mickiewicz University, Poland. In addition, 30 freeze-dried samples per core at 0.25 or 0.5 cm intervals between 0 and 15 cm were analysed for 210Pb/137Cs at the Liverpool University Environmental Radioactivity Laboratory. In this project, we analyse pollen and sedaDNA (Liu et al., 2020; doi:10.5061/dryad.69p8cz900) from three lake sediment cores from the Omoloy region in north-eastern Siberia (northern Yakutia), which are currently surrounded by different vegetation types ranging from typical tundra to open larch forest. First, our aim is to compare sedaDNA with the pollen data to see whether both methods track the same pattern with respect to compositional changes and diversity changes across the northern Russian treeline zone or are complementary to each other. Second, we reconstruct the mid- to late-Holocene changes of vegetation composition along a north–south transect. Third, we use the sedaDNA data to reconstruct variations in species richness and relate this to vegetation and climate change.
- Other research product . Collection . 2018Open Access EnglishAuthors:Winter, Anna; Steinhage, Daniel; Creyts, Timothy T; Eisen, Olaf;Winter, Anna; Steinhage, Daniel; Creyts, Timothy T; Eisen, Olaf;Publisher: PANGAEAProject: EC | BE-OI (730258)
- Other research product . Collection . 2017Open Access EnglishAuthors:Laepple, Thomas; Münch, Thomas; Casado, Mathieu; Hörhold, Maria; Landais, Amaelle; Kipfstuhl, Sepp;Laepple, Thomas; Münch, Thomas; Casado, Mathieu; Hörhold, Maria; Landais, Amaelle; Kipfstuhl, Sepp;Publisher: PANGAEAProject: EC | SPACE (716092), EC | COMBINISO (306045)
Stable water isotopes in polar ice provide a wealth of information about past climate evolution. Snow-pit studies allow us to relate observed weather and climate conditions to the measured isotope variations in the snow. They therefore offer the possibility to test our understanding of how isotope signals are formed and stored in firn and ice. As stable water isotopes in the snowfall are strongly correlated to air temperature, isotopes in the near-surface snow are thought to record the seasonal cycle at a given site. Accordingly, the number of seasonal cycles observed over a given depth should depend on the accumulation rate of snow. However, snow-pit studies from different accumulation conditions in East Antarctica reported similar isotopic variability and comparable apparent cycles in the d18 O and dD profiles with typical wavelengths of ~ 20cm. These observations are unexpected as the accumulation rates strongly differ between the sites, ranging from 20 to 80mm w.e. yr -1 (~ 6-21cm of snow per year). Various mechanism have been proposed to explain the isotopic variations individually at each site; however, none of these is consistent with the similarity of the different profiles independent of the local accumulation conditions. Here, we systematically analyse the properties and origins of isotopic variations in high-resolution firn profiles from eight East Antarctic sites. First, we confirm the suggested cycle length (mean distance between peaks) of ~ 20cm by counting the isotopic maxima. Spectral analysis further shows a strong similarity between the sites but indicates no dominant periodic features. Furthermore, the apparent cycle length increases with depth for most East Antarctic sites, which is inconsistent with burial and compression of a regular seasonal cycle. We show that these results can be explained by isotopic diffusion acting on a noise-dominated isotope signal. The firn diffusion length is rather stable across the Antarctic Plateau and thus leads to similar power spectral densities of the isotopic variations. This in turn implies a similar distance between isotopic maxima in the firn profiles. Our results explain a large set of observations discussed in the literature, providing a simple explanation for the interpretation of apparent cycles in shallow isotope records, without invoking complex mechanisms. Finally, the results underline previous suggestions that isotope signals in single ice cores from low-accumulation regions have a small signal-to-noise ratio and thus likely do not allow the reconstruction of interannual to decadal climate variations.
- Other research product . Collection . 2019Open AccessAuthors:Thornalley, David JR; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; +2 moreThornalley, David JR; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; Yashayaev, Igor M; Keigwin, Lloyd D;Project: EC | ATLAS (678760)
The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle. The AMOC has been shown to be weakening in recent years1; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA—sourced from melting glaciers and thickened sea ice that developed earlier in the LIA—weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet. Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here. The data presented here is the supporting data for Thornalley et al. 2018 (see details below) and is derived from cores KNR-178-56JPC and KNR-178-48JPC. It includes the mean sortable silt size, details of radiocarbon dating, the % nps and binned sub-surface temperature reconstructions.
70 Research products, page 1 of 7
Loading
- Other research product . Collection . 2020Open Access EnglishAuthors:Westerhold, Thomas;Westerhold, Thomas;Publisher: PANGAEAProject: EC | TiPES (820970), EC | MIONIÑO (796220), EC | EARTHSEQUENCING (617462)
Much of our understanding of Earth's past climate states comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, major intervals in those records that lack the temporal resolution and/or age control required to identify climate forcing and feedback mechanisms. Here we document 66 million years of global climate by a new high-fidelity Cenozoic global reference benthic carbon and oxygen isotope dataset (CENOGRID). Using recurrence analysis, we find that on timescales of millions of years Earth's climate can be grouped into Hothouse, Warmhouse, Coolhouse and Icehouse states separated by transitions related to changing greenhouse gas levels and the growth of polar ice sheets. Each Cenozoic climate state is paced by orbital cycles, but the response to radiative forcing is state dependent.
- Other research product . Collection . 2021Open Access EnglishAuthors:Van Audenhaege, Loïc; Broad, Emmeline; Hendry, Katharine R; Huvenne, Veerle A I;Van Audenhaege, Loïc; Broad, Emmeline; Hendry, Katharine R; Huvenne, Veerle A I;Publisher: PANGAEAProject: EC | iAtlantic (818123), EC | ICY-LAB (678371)
We used a multibeam echosounder (Reson7125) front-mounted onto the ROV Isis (Dive D333, DY081 expedition) to map the terrain of a vertical feature marking the edge of a deep-sea glacial trough (Labrador Sea, [63°51.9'N, 53°16.9'W, depth: 650 to 800 m]). After correction of the ROV navigation (i.e. merging of USBL and DVL), bathymetry [m] and backscatter [nominal unit] were extracted at a resolution of 0.3 m and different terrain descriptors were computed: Slope, Bathymetric Position Index (BPI), Terrain Ruggedness Index, Roughness, Mean and Gaussian curvatures and orientations (Northness and Eastness), at scales of 0.9, 3 and 9 m. Using a Principal Component Analysis (PCA), the terrain descriptors enabled to retrieve 4 terrain clusters and their associated confusion index, to investigate the spatial heterogeneity of the terrain. This approach also underlined the presence of geomorphic features in the wall terrain. The extraction of the backscatter intensity for the first time considering vertical terrains, opens space for further acquisition and processing development. Using photographs collected by the ROV Isis (Dive D334, DY081 expedition), epibenthic fauna was annotated. Each image was linked to a terrain cluster in the 3D space and pooled into 20-m² bins of images. A Bray-Curtis dissimilarity matrix was constructed from morphospecies abundances. This enabled to test for differences of assemblage composition among clusters. Few species appeared more abundant in particular clusters such as L. pertusa in high-roughness cluster. However, nMDS suggested differences in assemblage composition but these dissimilarities were not strongly delineated. Whereas the design of this study may have limited distinctive differences among assemblages, this shows the potential of this cost-effective method of top-down habitat mapping to be applied in undersampled benthic habitat in order to provide a priori knwoledge for defining appropriate sampling design.
- Open Access EnglishAuthors:De Clippele, Laurence Helene; Huvenne, Veerle A I; Molodtsova, Tina; Roberts, J Murray;De Clippele, Laurence Helene; Huvenne, Veerle A I; Molodtsova, Tina; Roberts, J Murray;Publisher: PANGAEA - Data Publisher for Earth & Environmental ScienceProject: EC | ATLAS (678760)
These datasets were used to describe the diversity, ecology and role of non-scleractinian corals on scleractinian cold-water coral carbonate mounds in the Logachev Mound Province, Rockall Bank, NE Atlantic. Cold-water coral carbonate mounds, created by framework-building scleractinian corals, are also important habitats for non-scleractinian corals, whose ecology and role are understudied in deep-sea environments. In total ten non-scleractinian species were identified, which were mapped out along eight ROV video transects. Eight species were identified as black corals (three belonging to the family Schizopathidae, one each to the Leiopathidae, Cladopathidae, and Antipathidae and two to an unknown family) and two as gorgonians (Isididae and Plexauridae). The most abundant species were Leiopathes sp. and Parantipathes sp. 2. Areas with a high diversity of non-scleractinian corals are interpreted to offer sufficient food, weak inter-species competition and the presence of heterogeneous and hard settlement substrates. A difference in the density and occurrence of small vs. large colonies of Leiopathes sp. was also observed, which is likely related to a difference in the stability of the substrate they choose for settlement. Non-scleractinian corals, especially black corals, are an important habitat for crabs, crinoids, and shrimps in the Logachev Mound Province.
- Other research product . Collection . 2020Open Access EnglishAuthors:Tessin, Allyson; März, Christian; Kędra, Monika; Matthiessen, Jens; Morata, Nathalie; Nairn, Michael; O'Regan, Matthew; Peeken, Ilka;Tessin, Allyson; März, Christian; Kędra, Monika; Matthiessen, Jens; Morata, Nathalie; Nairn, Michael; O'Regan, Matthew; Peeken, Ilka;Publisher: PANGAEAProject: EC | PaNDA (709175)
The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 μmol m−2 yr−1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736–2449 μmol m−2 yr−1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin.
- Other research product . CollectionOpen AccessAuthors:Oliver S. Ashford; Andrew J. Kenny; Christopher R. S. Barrio Froján; Michael B. Bonsall; Tammy Horton; Angelika Brandt; Graham J. Bird; Sarah Gerken; Alex D. Rogers;Oliver S. Ashford; Andrew J. Kenny; Christopher R. S. Barrio Froján; Michael B. Bonsall; Tammy Horton; Angelika Brandt; Graham J. Bird; Sarah Gerken; Alex D. Rogers;Publisher: FigshareProject: EC | ATLAS (678760)
An understanding of the balance of interspecific competition and the physical environment in structuring organismal communities is crucial because those communities structured primarily by their physical environment typically exhibit greater sensitivity to environmental change than those structured predominantly by competitive interactions. Here, using detailed phylogenetic and functional information, we investigate this question in macrofaunal assemblages from Northwest Atlantic Ocean continental slopes, a high seas region projected to experience substantial environmental change through the current century. We demonstrate assemblages to be both phylogenetically and functionally under-dispersed and thus conclude that the physical environment, not competition, may dominate in structuring deep-ocean communities. Further, we find temperature and bottom trawling intensity to be amongst the environmental factors significantly related to assemblage diversity. These results hint that deep-ocean communities are highly sensitive to their physical environment and vulnerable to environmental perturbation, including by direct disturbance through fishing, and indirectly through the changes brought about by climate change.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Other research product . Collection . 2016Open AccessAuthors:Fox, Alan D.; Lea-Anne Henry; Corne, David W.; J. Murray Roberts;Fox, Alan D.; Lea-Anne Henry; Corne, David W.; J. Murray Roberts;Publisher: FigshareProject: UKRI | Advanced environmental mo... (NE/M007235/1), EC | ATLAS (678760), UKRI | Where did all the CO2 go?... (NE/J021121/1)
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
- Other research product . Collection . 2020Open Access EnglishAuthors:Liu, Sisi; Stoof-Leichsenring, Kathleen Rosmarie; Kruse, Stefan; Pestryakova, Luidmila A; Herzschuh, Ulrike;Liu, Sisi; Stoof-Leichsenring, Kathleen Rosmarie; Kruse, Stefan; Pestryakova, Luidmila A; Herzschuh, Ulrike;Publisher: PANGAEAProject: EC | GlacialLegacy (772852)
Here, we provide the raw pollen data archived in three Siberian lake sediment cores spanning the mid-Holocene to the present (7.6-0 cal ka BP), from northern typical tundra to southern open larch forest in the Omoloy region. There are three cores: 1. 14-OM-20B, Lat. / °: 70.53, Lon. / °: 132.91, Ele. / m a.s.l.: 52, Modern vegetation: open larch forest, Lake area / km2: 0.26, Maximal depth / m: 3.4 2. 14-OM-02B, Lat. / °: 70.72, Lon. / °: 132.67, Ele. / m a.s.l.: 58, Modern vegetation: forest tundra, Lake area / km2: 0.08, Maximal depth / m: 3.5 3. 14-OM-12A, Lat. / °: 70.96, Lon. / °: 132.57, Ele. / m a.s.l.: 60, Modern vegetation: tundra, Lake area / km2: 0.09, Maximal depth / m: 4.5 Three lake sediment cores, 14OM12A (33 cm long), 14OM02B (49.5 cm long) and 14OM20B (86 cm long), were recovered from three sites using a UWITEC gravity corer (6 cm internal diameter) equipped with a hammer tool in July 2014. From the three cores, 16 bulk organic carbon samples were selected because of the lack of macrofossil remains and radiocarbon dated using accelerator mass spectrometry (AMS) at Poznań radiocarbon laboratory of Adam Mickiewicz University, Poland. In addition, 30 freeze-dried samples per core at 0.25 or 0.5 cm intervals between 0 and 15 cm were analysed for 210Pb/137Cs at the Liverpool University Environmental Radioactivity Laboratory. In this project, we analyse pollen and sedaDNA (Liu et al., 2020; doi:10.5061/dryad.69p8cz900) from three lake sediment cores from the Omoloy region in north-eastern Siberia (northern Yakutia), which are currently surrounded by different vegetation types ranging from typical tundra to open larch forest. First, our aim is to compare sedaDNA with the pollen data to see whether both methods track the same pattern with respect to compositional changes and diversity changes across the northern Russian treeline zone or are complementary to each other. Second, we reconstruct the mid- to late-Holocene changes of vegetation composition along a north–south transect. Third, we use the sedaDNA data to reconstruct variations in species richness and relate this to vegetation and climate change.
- Other research product . Collection . 2018Open Access EnglishAuthors:Winter, Anna; Steinhage, Daniel; Creyts, Timothy T; Eisen, Olaf;Winter, Anna; Steinhage, Daniel; Creyts, Timothy T; Eisen, Olaf;Publisher: PANGAEAProject: EC | BE-OI (730258)
- Other research product . Collection . 2017Open Access EnglishAuthors:Laepple, Thomas; Münch, Thomas; Casado, Mathieu; Hörhold, Maria; Landais, Amaelle; Kipfstuhl, Sepp;Laepple, Thomas; Münch, Thomas; Casado, Mathieu; Hörhold, Maria; Landais, Amaelle; Kipfstuhl, Sepp;Publisher: PANGAEAProject: EC | SPACE (716092), EC | COMBINISO (306045)
Stable water isotopes in polar ice provide a wealth of information about past climate evolution. Snow-pit studies allow us to relate observed weather and climate conditions to the measured isotope variations in the snow. They therefore offer the possibility to test our understanding of how isotope signals are formed and stored in firn and ice. As stable water isotopes in the snowfall are strongly correlated to air temperature, isotopes in the near-surface snow are thought to record the seasonal cycle at a given site. Accordingly, the number of seasonal cycles observed over a given depth should depend on the accumulation rate of snow. However, snow-pit studies from different accumulation conditions in East Antarctica reported similar isotopic variability and comparable apparent cycles in the d18 O and dD profiles with typical wavelengths of ~ 20cm. These observations are unexpected as the accumulation rates strongly differ between the sites, ranging from 20 to 80mm w.e. yr -1 (~ 6-21cm of snow per year). Various mechanism have been proposed to explain the isotopic variations individually at each site; however, none of these is consistent with the similarity of the different profiles independent of the local accumulation conditions. Here, we systematically analyse the properties and origins of isotopic variations in high-resolution firn profiles from eight East Antarctic sites. First, we confirm the suggested cycle length (mean distance between peaks) of ~ 20cm by counting the isotopic maxima. Spectral analysis further shows a strong similarity between the sites but indicates no dominant periodic features. Furthermore, the apparent cycle length increases with depth for most East Antarctic sites, which is inconsistent with burial and compression of a regular seasonal cycle. We show that these results can be explained by isotopic diffusion acting on a noise-dominated isotope signal. The firn diffusion length is rather stable across the Antarctic Plateau and thus leads to similar power spectral densities of the isotopic variations. This in turn implies a similar distance between isotopic maxima in the firn profiles. Our results explain a large set of observations discussed in the literature, providing a simple explanation for the interpretation of apparent cycles in shallow isotope records, without invoking complex mechanisms. Finally, the results underline previous suggestions that isotope signals in single ice cores from low-accumulation regions have a small signal-to-noise ratio and thus likely do not allow the reconstruction of interannual to decadal climate variations.
- Other research product . Collection . 2019Open AccessAuthors:Thornalley, David JR; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; +2 moreThornalley, David JR; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; Yashayaev, Igor M; Keigwin, Lloyd D;Project: EC | ATLAS (678760)
The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle. The AMOC has been shown to be weakening in recent years1; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA—sourced from melting glaciers and thickened sea ice that developed earlier in the LIA—weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet. Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here. The data presented here is the supporting data for Thornalley et al. 2018 (see details below) and is derived from cores KNR-178-56JPC and KNR-178-48JPC. It includes the mean sortable silt size, details of radiocarbon dating, the % nps and binned sub-surface temperature reconstructions.