
IIT
Funder
430 Projects, page 1 of 86
Open Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2025Partners:IITIITFunder: European Commission Project Code: 948349Overall Budget: 1,500,000 EURFunder Contribution: 1,500,000 EURTo interact with the world that surrounds us, we rely on integrated spatial representations which we build during infancy. Visual experience is crucial for integrating sensory signals in a coherent configuration, taking into account the changes of body position in space. When vision is absent, as in the case of blind infants, how the space representation develops is still unclear. The aim of MYSpace is to identify the specific developmental periods when visual experience is crucial in establishing multisensory associations between vision and other modalities. Blind infants, blind children and blind adolescents will take part in longitudinal and cross-sectional studies spanning the developmental windows when spatial skills are acquired in sighted children. Advanced methods in psychophysics and neuroscience (high-density EEG and MRI), modeling and high-resolution motion tracking analysis will be used to investigate the following: - the role of vision on the development of independent (Objective 1) and multisensory (Objective 2) audio and tactile spatial representations at the behavioral and cortical levels; - the involvement of the visual cortex on this spatial processing when vision is absent (Objective 3); - the benefit of multisensory trainings to recover spatial impairments (Objective 4). By elucidating these aspects, the project will bridge a fundamental gap in the knowledge of spatial representations and determine how their development is shaped by visual experiences. As an outcome, MYSpace will provide a new quantitative methodology to restore the coherent spatial representations of blind infants through multisensory trainings.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::dfd5d28c96d85dd43eaea1f7c30c4e80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::dfd5d28c96d85dd43eaea1f7c30c4e80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2028Partners:IITIITFunder: European Commission Project Code: 101044020Overall Budget: 2,993,750 EURFunder Contribution: 2,993,750 EURIn magnetic hyperthermia (MHT), magnetic nanoparticles (MNPs) convert magneto-energy into heat under a time-varying magnetic field. MHT with MNPs is used in catalysis to promote reactions in solution and in cancer therapy, to ‘burn’ primary tumors in clinic, e.g. Glioblastoma, upon deposition of nanoparticles at the tumor site. The power of MHT, being an externally triggered approach to produce heat, goes beyond these actual uses. In GIULIa project I will apply MHT in tasks not yet explored to target the unmet needs of treatment of metastasized tumors and address MHT-mediated locomotion. MHT treatment of cancer metastases is now not doable because of scarce MNP dose accumulation at the spreading tumor sites. In GIULIa, MNPs designed for MHT, will be loaded in/on natural killer (NK) immune cells, which, intravenously injected, will deliver as Trojan horses the right dose of magnetic materials needed for MHT to the metastases. I will aim at raising the capability of NK and CAR-NK immune cells to infiltrate and recognize the tumor. This will merge synergic toxic effects of NK cells immunotherapy with MHT-heat damage of MNPs. Next, magnetic microdevices and their remote locomotion based on MHT-heat gradient, represent a new technological solution for delivery purposes with no tissue-depth attenuation for their actuation. Under MHT, I will explore the localization of heat spots on metallic magnetic-based heterostructures as a means to generate bubbles in a liquid and drag an ad hoc designed magnetic-microdevices to which the heterostructures are anchored. For the scale-up synthesis of metallic-magnetic heterostructures needed for the microdevices, I will merge an in-flow approach to an MHT-route synthesis. The heat at the MNP surface will be used as an in situ energy source to promote the growth of the metallic domain on the MNP. Advanced NK cells and microdevice technology of GIULIa will impact the medical fields of MNP/drug delivery, immunotherapy and smart robotics.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f754ec8b17166c1da89c97a4f766b68b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f754ec8b17166c1da89c97a4f766b68b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2016Partners:IITIITFunder: European Commission Project Code: 629867All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::2e348939b83a06c862da74b406eca52a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::2e348939b83a06c862da74b406eca52a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2019 - 2021Partners:IITIITFunder: European Commission Project Code: 795838Overall Budget: 180,277 EURFunder Contribution: 180,277 EURThe aim of this proposal is to study the transition between the scalar an vectorial regimes of light-matter interactions and show that its knowledge can be used to create a chirality-discriminating device. For that, the scalar-vectorial transition will be studied for three conceptually different nanostructures. The study will be carried out with a technique developed by the ER: vortex beam-induced circular dichroism. The findings of the study will be given by means of three look-up-tables, one for each kind of nanostructure. These look-up-tables will allow any light-scientist working with similar nanostructures to identify the regime (scalar/vectorial) in which their light-matter interactions are taking place. The results of this project will improve our fundamental understanding of light-matter interactions. This knowledge will add a new dimension into the characterization of complex 2D and 3D nanostructures. To show the potential of this characterization, at the end of the project we will use the look-up-table of a 3D plasmonic vortex to design a device that efficiently discriminates the chirality of molecules. The project has all the ideal elements to fulfill its goals. On one hand, the ER is already a scientific expert in light-matter interactions at the nanoscale. On the other hand, the Plasmon Nanotechnologies group at IIT, with its world-class laboratories and clean rooms provides an extraordinary scientific environment for the ER to develop his career path. In particular, it is expected that the ER learns many different nanofabrication techniques. Thus, thanks to this action, the ER will become a preeminent scientist with a unique set of skills combining nanofabrication, optical manipulation/measurements and simulations/theoretical work. This will place him in an advantageous position to become a world leader in nano-optics. The supervision and expertise of Dr. De Angelis will ensure that these goals are reached.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::5deaf7c2c73c5df39278a4e18d73203e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::5deaf7c2c73c5df39278a4e18d73203e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2018Partners:IITIITFunder: European Commission Project Code: 616213All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::05a2df91ca67e40f1719fab591971f8c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::05a2df91ca67e40f1719fab591971f8c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right