
INBRAIN NEUROELECTRONICS SL
INBRAIN NEUROELECTRONICS SL
5 Projects, page 1 of 1
Open Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2026Partners:INBRAIN NEUROELECTRONICS SLINBRAIN NEUROELECTRONICS SLFunder: European Commission Project Code: 101136541Overall Budget: 2,495,000 EURFunder Contribution: 2,495,000 EURWe have developed a novel type of graphene-based transistors capable of delivering high-resolution brain mapping, implementing multiplexing strategies, and monitoring activity across a wide range of frequencies, including low frequencies. We circumvented the bottlenecks faced by other approaches thanks to the unique properties of graphene. Graphene is an outstanding conductor and provides the perfect platform for multiplexing. Thus, our system requires much fewer wires than current alternatives. Further, graphene is just one atom thick, flexible and can be integrated into ultra-soft flexible substrates, providing excellent contact with brain tissue. Our graphene transistor technology has been developed as part of the FET-Graphene Flagship and FET-proactive BrainCom projects. We have assessed the technology in rodents and demonstrated that our devices allow monitoring brain activity with very high spatial resolution and over a wide bandwidth frequency range. This project will pave the way for the clinical translation of brain-mapping neural interfaces based on graphene-transistor arrays for brain-computer interfaces.
more_vert Open Access Mandate for Publications assignment_turned_in Project2020 - 2023Partners:FOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS, Bundeswehr University Munich, 3SUN S.R.L., UNIPD, University of Regensburg +190 partnersFOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS,Bundeswehr University Munich,3SUN S.R.L.,UNIPD,University of Regensburg,IDIBAPS,CIC ENERGIGUNE,University of Bremen,UNIVERSITE DE LILLE,CSIC,G.TEC MEDICAL ENGINEERING GMBH,IHP GMBH,BSL,SIXONIA TECH,TUW,NSN,HEIDELBERG MATERIALS ITALIA CEMENTI SPA,University of Nottingham,CNRS,CIBER,UNISA,ProGnomics Ltd.,Emberion Ltd,EAB,PIXIUM VISION,Polytechnic University of Milan,Trinity College Dublin, Ireland,SUSS MicroTec Lithography GmbH,Chalmers University of Technology,NanOsc AB,AMO GMBH,DI,LNE,TU Delft,UCL,BEDIMENSIONAL SPA,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,CAU,Varta Microbattery (Germany),Evonik Nutrition & Care GmbH,GRUPO ANTOLIN-INGENIERIA SA,MAGNA ELECTRONICS SWEDEN AB,MCS,Infineon Technologies (Germany),HUN-REN CENTRE FOR ENERGY RESEARCH,AIRBUS OPERATIONS SL,M-Solv,University of Sheffield,MPG,STMicroelectronics (Switzerland),BMW Group (Germany),INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP,UCLM,ABB AB,INBRAIN NEUROELECTRONICS SL,MICRO RESIST TECHNOLOGY GESELLSCHAFT FUER CHEMISCHE MATERIALIEN SPEZIELLER PHOTORESISTSYSTEME MBH,KIT,Plastic Logic (United Kingdom),VARTA INNOVATION GMBH,OINT,GRAPHENE-XT SRL,LEONARDO,Carlos III University of Madrid,BMW (Germany),Singulus (Germany),CEA,UMINHO,RWTH,VRS,CRAYONANO AS,GRAPHMATECH AB,CRF,UCL,DIPC,AALTO,Printed Electronics Ltd,Imperial,INSERM,ICFO,UniPi,UZH,CIC biomaGUNE,confinis,LHT,AIRBUS HELICOPTERS,Siemens (Germany),QMUL,FNSR,Nanesa,AIXTRON LIMITED,IAW,ARCELORMITTAL,UPSud,QURV TECHNOLOGIES SL,IMech-BAS,Naturality Research & Development,CNR,CHALMERS INDUSTRITEK,EMBERION OY,TECNIUM,UNISTRA,WUT,Mellanox Technologies (Israel),NOKIA UK LIMITED,CNIT,University of Rome Tor Vergata,TU/e,TEMAS AG TECHNOLOGY AND MANAGEMENT SERVICES,INDORAMA VENTURES FIBERS GERMANY GMBH,Bundeswehr,AVANZARE,VMI,SUSS MicroTec Photomask Equipment,TECNALIA,BOKU,University of Ulm,FSU,University of Manchester,AIXTRON SE,UT,BIOAGE,BMVg,Mellanox Technologies (United States),University of Groningen,ICN2,EVONIK CREAVIS GMBH,FAU,NanoTechLab,FHG,ITME,TUD,FIOH,NAWATECHNOLOGIES,IMEC,DALLARA AUTOMOBILI SPA,INTER-QUIMICA,DTU,SISSA,University of Zaragoza,Sonaca (Belgium),AIRBUS DEFENCE AND SPACE GMBH,Composites Evolution (United Kingdom),HCPB,UAB,NOVALIA LIMITED,NOKIA SOLUTIONS AND NETWORKS ITALIA SPA,MEDICA SPA,NPL MANAGEMENT LIMITED,SCHAFFHAUSEN INSTITUTE OF TECHNOLOGY AG,HITACHI ENERGY SWEDEN AB,BASF SE,EVONIK DEGUSSA GmbH,IMDEA NANO,Umeå University,University of Ioannina,AMALYST,TME,Airbus (Netherlands),ULB,UNITS,GRAPHENEA SEMICONDUCTOR SL,IIT,INTERNACIONAL DE COMPOSITES SA,EPFL,G TEC,EGP,Technion – Israel Institute of Technology,SPAC SPA,ICON LIFESAVER LIMITED,BRETON SPA,KI,SIEC BADAWCZA LUKASIEWICZ - INSTYTUT MIKROELEKTRONIKI I FOTONIKI,ESF,BARNICES Y PINTURAS MODERNAS SOCIEDAD ANONIMA,UNIGE,BRUNO BALDASSARI & FRATELLI SPA,Sorbonne University,UH,USTL,Universität Augsburg,THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE,IDIBAPS-CERCA,University of Warwick,CIC nanoGUNE,Lancaster University,PHI-STONE AG,Philipps-University of Marburg,POLYMEM,CAMBRIDGE RAMAN IMAGING LTD,EPFZ,EMPA,TEMAS SOLUTIONS GMBH,ΕΛΜΕΠΑ,FIDAMC,THALESFunder: European Commission Project Code: 881603Overall Budget: 149,703,008 EURFunder Contribution: 149,703,008 EURThis proposal describes the third core project of the Graphene Flagship. It forms the fourth phase of the FET flagship and is characterized by a continued transition towards higher technology readiness levels, without jeopardizing our strong commitment to fundamental research. Compared to the second core project, this phase includes a substantial increase in the market-motivated technological spearhead projects, which account for about 30% of the overall budget. The broader fundamental and applied research themes are pursued by 15 work packages and supported by four work packages on innovation, industrialization, dissemination and management. The consortium that is involved in this project includes over 150 academic and industrial partners in over 20 European countries.
more_vert Open Access Mandate for Publications assignment_turned_in Project2020 - 2024Partners:UCLM, SIXONIA TECH, NSN, AMALYST, University of Rome Tor Vergata +186 partnersUCLM,SIXONIA TECH,NSN,AMALYST,University of Rome Tor Vergata,INDORAMA VENTURES FIBERS GERMANY GMBH,AVANZARE,UH,UNISTRA,AALTO,Imperial,INSERM,ICFO,IIT,INTERNACIONAL DE COMPOSITES SA,LNE,TU Delft,Emberion Ltd,UNISA,Trinity College Dublin, Ireland,Infineon Technologies (Germany),SCHAFFHAUSEN INSTITUTE OF TECHNOLOGY AG,NanOsc AB,STMicroelectronics (Switzerland),INBRAIN NEUROELECTRONICS SL,Siemens (Germany),MICRO RESIST TECHNOLOGY GESELLSCHAFT FUER CHEMISCHE MATERIALIEN SPEZIELLER PHOTORESISTSYSTEME MBH,TUD,ARCELORMITTAL,FIOH,UPSud,QMUL,UT,FNSR,BIOAGE,BMVg,AIXTRON LIMITED,Mellanox Technologies (United States),IMEC,DALLARA AUTOMOBILI SPA,IAW,UniPi,EMBERION OY,HCPB,ABB AB,QURV TECHNOLOGIES SL,SUSS MicroTec Photomask Equipment,MCS,HUN-REN CENTRE FOR ENERGY RESEARCH,EPFL,TECNALIA,CNR,OINT,SISSA,KIT,UCL,BOKU,IDIBAPS,Plastic Logic (United Kingdom),LEONARDO,CIC ENERGIGUNE,ULB,AIRBUS OPERATIONS SL,UMINHO,UNIPD,University of Regensburg,UNITS,G.TEC MEDICAL ENGINEERING GMBH,CIC biomaGUNE,ICON LIFESAVER LIMITED,HEIDELBERG MATERIALS ITALIA CEMENTI SPA,UAB,DI,BASF SE,CRF,GRAPHENE-XT SRL,EVONIK DEGUSSA GmbH,CAU,CEA,Varta Microbattery (Germany),GRUPO ANTOLIN-INGENIERIA SA,RWTH,BRETON SPA,IMDEA NANO,FIDAMC,CSIC,VRS,NAWATECHNOLOGIES,SUSS MicroTec Lithography GmbH,Chalmers University of Technology,THALES,UCL,DIPC,FOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS,Bundeswehr University Munich,LHT,AIRBUS HELICOPTERS,Philipps-University of Marburg,MAGNA ELECTRONICS SWEDEN AB,3SUN S.R.L.,Printed Electronics Ltd,UZH,NOKIA UK LIMITED,confinis,TU/e,Nanesa,Bundeswehr,VMI,USTL,Universität Augsburg,EAB,BMW Group (Germany),PIXIUM VISION,THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE,IDIBAPS-CERCA,VARTA INNOVATION GMBH,University of Sheffield,MPG,Umeå University,University of Ioannina,IHP GMBH,BSL,University of Bremen,TECNIUM,UNIVERSITE DE LILLE,University of Manchester,INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP,TME,BEDIMENSIONAL SPA,AMO GMBH,Polytechnic University of Milan,University of Groningen,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,Carlos III University of Madrid,TUW,Singulus (Germany),University of Warwick,ICN2,CRAYONANO AS,GRAPHMATECH AB,BMW (Germany),University of Ulm,AIRBUS DEFENCE AND SPACE GMBH,University of Nottingham,POLYMEM,CNRS,CIBER,ProGnomics Ltd.,Composites Evolution (United Kingdom),KI,SIEC BADAWCZA LUKASIEWICZ - INSTYTUT MIKROELEKTRONIKI I FOTONIKI,ESF,BRUNO BALDASSARI & FRATELLI SPA,M-Solv,MEDICA SPA,FSU,AIXTRON SE,NPL MANAGEMENT LIMITED,CAMBRIDGE RAMAN IMAGING LTD,EPFZ,TEMAS SOLUTIONS GMBH,ΕΛΜΕΠΑ,CHALMERS INDUSTRITEK,FHG,ITME,NanoTechLab,CNIT,INTER-QUIMICA,DTU,University of Zaragoza,NOVALIA LIMITED,NOKIA SOLUTIONS AND NETWORKS ITALIA SPA,IMech-BAS,Naturality Research & Development,FAU,Sonaca (Belgium),GRAPHENEA SEMICONDUCTOR SL,SPAC SPA,Lancaster University,PHI-STONE AG,EGP,Airbus (Netherlands),EMPA,WUT,Mellanox Technologies (Israel),G TEC,UNIGE,Sorbonne University,CIC nanoGUNE,Technion – Israel Institute of Technology,BARNICES Y PINTURAS MODERNAS SOCIEDAD ANONIMAFunder: European Commission Project Code: 952792Overall Budget: 20,000,000 EURFunder Contribution: 20,000,000 EURThe 2D Experimental Pilot Line (2D-EPL) project will establish a European ecosystem for prototype production of Graphene and Related Materials (GRM) based electronics, photonics and sensors. The project will cover the whole value chain including tool manufacturers, chemical and material providers and pilot lines to offer prototyping services to companies, research centers and academics. The 2D-EPL targets to the adoption of GRM integration by commercial semiconductor foundries and integrated device manufacturers through technology transfer and licensing. The project is built on two pillars. In Pillar 1, the 2D-EPL will offer prototyping services for 150 and 200 mm wafers, based on the current state of the art graphene device manufacturing and integration techniques. This will ensure external users and customers are served by the 2D-EPL early in the project and guarantees the inclusion of their input in the development of the final processes by providing the specifications on required device layouts, materials and device performances. In Pillar 2, the consortium will develop a fully automated process flow on 200 and 300 mm wafers, including the growth and vacuum transfer of single crystalline graphene and TMDCs. The knowledge gained in Pillar 2 will be transferred to Pillar 1 to continuously improve the baseline process provided by the 2D-EPL. To ensure sustainability of the 2D-EPL service after the project duration, integration with EUROPRACTICE consortium will be prepared. It provides for the European actors a platform to develop smart integrated systems, from advanced prototype design to small volume production. In addition, for the efficiency of the industrial exploitation, an Industrial Advisory Board consisting mainly of leading European semiconductor manufacturers and foundries will closely track and advise the progress of the 2D-EPL. This approach will enable European players to take the lead in this emerging field of technology.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2026Partners:IMEC, ICN2, INBRAIN NEUROELECTRONICS SL, FHG, Palacký University, Olomouc +1 partnersIMEC,ICN2,INBRAIN NEUROELECTRONICS SL,FHG,Palacký University, Olomouc,LUMCFunder: European Commission Project Code: 101070865Overall Budget: 4,428,400 EURFunder Contribution: 4,428,400 EURNeurostimulation therapies hold the promise to treat brain diseases refractory to pharmacological treatment. However, these therapies are not fully adopted due to important technological and clinical challenges, such as highly invasive implantation, multiple side effects due to off-target stimulation, low signal resolution and lack of personalized therapies. The MINIGRAPH project aims to develop a ground-breaking neuromodulation therapy that addresses current needs of the field. We will develop and validate a new generation of brain implants with closed-loop neuromodulation capabilities, enabled by skull implanted flexible electronics unit and miniature and high-density arrays of graphene microelectrodes. Our implant will feature high miniaturization, large spatial resolution and optimal biocompatibility with brain tissue. The closed-loop capabilities will enable to develop personalized and adaptive therapies depending on patients’ needs. In addition, we will also develop and validate a minimally invasive implantation procedure with high precision implantation and low invasiveness through a single small skull incision. The MINIGRAPH project outcomes will truly revolutionize the way we treat neurological and neuropsychiatric diseases in the near future. To achieve our ambitious objectives, we have put together an interdisciplinary consortium formed by high-renowned research centers and a high-promising SME, with all the expertise and resources needed to complete the project within time and budget. Our project addresses the objectives of the “Tools to measure and stimulate activity in brain tissue” pathfinder challenge, as it provides 1) miniature and minimally invasive brain implants, 2) closed-loop neuromodulation therapy for personalized medicine, 3) biocompatible ultra-thin and flexible neuroelectrodes, and 4) minimized power consumption solution. All together, we believe the MINIGRAPH project will be a unique addition to the challenge portfolio.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2025Partners:INBRAIN NEUROELECTRONICS SLINBRAIN NEUROELECTRONICS SLFunder: European Commission Project Code: 190141476Overall Budget: 3,562,500 EURFunder Contribution: 2,493,750 EURNeurological disorders represent one of the greatest healthcare challenges for our society (1B affected people worldwide). 25-35% of these patients are refractory to pharmacological therapy and are left with no options. Neuroelectronic therapies, aimed at recording and stimulating brain activity to restore normal brain function, are emerging as a safe alternative for them. However, current neuroelectronic implants are made of big metal leads with multiple limitations, such as poor resolution, low specificity and high invasiveness. We, at INBRAIN Neuroelectronics, have the solution. We are developing a completed platform of intelligent neuroelectronic interface systems powered by Graphene dots. We are developing graphene-based neural implants that, powered by AI, will have the capability of reading single neural cells at a resolution never seen before, detecting therapy-specific biomarkers and triggering adaptive responses for increased outcomes in personalized neurological therapies.
more_vert