Powered by OpenAIRE graph
Found an issue? Give us feedback

BAE Systems (Sweden)

178 Projects, page 1 of 36
  • Funder: UK Research and Innovation Project Code: EP/P01951X/1
    Funder Contribution: 415,368 GBP

    The inspection of safety-critical components in the nuclear power industry depends on procedures that can detect defects to a given threshold of severity; the acceptance process for this is known as inspection qualification. Inspection qualification in the UK is a highly developed formal activity, and is representative of the best practice in the world. However it can be very conservative if there is uncertainty in the expected measured response. A vital example is the scattering of ultrasound from the tips of rough cracks, such as thermal fatigue cracks or stress corrosion cracks. Ultrasound scattering from crack tips is widely exploited to measure crack sizes, but while the nature of the scattering is well understood for smooth cracks, scattering from the tips of rough cracks can differ significantly, and is not readily predictable. Consequently the qualification of ultrasound inspections for rough cracks has to be subject to severely conservative assumptions, and even so there remains a risk of misinterpreting findings. This project aims to bring understanding to the nature of the scattering, and to develop predictive modelling tools, such that these conservative assumptions can be safely eroded and the reliability of inspections improved. This will enable industry to reduce the costs of manufacturing and repairing, and down-time from outages, as well as improving confidence in the safe operation of safety-critical plant. The project will build on a strong UK heritage of the knowledge of ultrasound scattering, including recent work by the proposers on the stochastic nature of wave reflections from rough surfaces. The key aim is to deliver a new analytical approach that will predict the statistically expected scattering from the tips of cracks of given characteristics of roughness. The work will also include experimental investigation of real cracks and numerical modelling studies. The new ideas will be applied to the primary ultrasound inspection techniques of Time-of-Flight-Diffraction, Pulse-Echo, and array imaging. The work will be undertaken as a collaboration between researchers in Mechanical Engineering and in Mathematics at Imperial College. The proposal is being submitted within the UK Research Centre in NDE (RCNDE) to its targeted research programme. The proposal has been reviewed internally by the RCNDE, approved by the RCNDE board, and supported financially by five RCNDE industrial members.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H009744/1
    Funder Contribution: 6,150,600 GBP

    Elite athletes walk a fine line between performance success and failure. Although regarded by the public as examples of ultimate fitness, in reality they often exhibit vital signs bordering on clinical pathology. Their physiological parameters challenge our notions of what we consider clinically normal, for, as individuals, athletes represent a unique model of human stress adaptation and often, sadly, mal-adaptation. Understanding this human variance may assist ultimately in understanding aspects of well being in the population at large, in the work place and during healthy exercise, as well as when undergoing lifestyle changes to overcome disease, age-related changes and chronic stress.To maximise the potential of GB athletes and support the quest for gold at future World Championships, Summer and Winter Olympic and Paralympic Games, the UK's sports governing bodies and the UK sports governing bodies and research councils have identified the opportunity for engineering and physical science disciplines to support and interact with the sports community during training. Not only will this secure competitive advantage for UK athletes, it will also, of more general application, contribute understanding of the biology of athletic performance to gain insights which will improve the health and wellbeing of the population at large.The vision of ESPRIT is to position UK at the forefront of pervasive sensing in elite sports and promote its wider application in public life-long health, wellbeing and healthcare, whilst also addressing the EPSRC's key criteria for UK science and engineering research. The proposed programme represents a unique synergy of leading UK research in body sensor networks (BSN), biosensor design, sports performance monitoring and equipment design. The provision of ubiquitous and pervasive monitoring of physical, physiological, and biochemical parameters in any environment and without activity restriction and behaviour modification is the primary motivation of BSN research. This has become a reality with the recent advances in sensor design, MEMS integration, and ultra-low power micro-processor and wireless technologies. Since its inception, BSN has advanced very rapidly internationally. The proposing team has already contributed to a range of novel, low cost, miniaturised wireless devices and prototypes for sports and healthcare.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K029010/1
    Funder Contribution: 488,909 GBP

    Additive manufacturing (AM) is a process of building a component layer by layer. In a simplified manner, it can be described as 3D printing of a component. The technology is important because it is logistically and conceptually extremely simple with major benefits. For example it would lead to significantly reduced material and energy use and manufacture of structures such as aircraft. Lowering of material wastage is an important issue as presently the aerospace sector machines out complex shapes from regular shaped structures. This causes significant wastage and a very high buy to fly ratio, i.e. A large amount of material needs to be purchased compared to that which goes on the aircraft. AM is able to create complex component architectures which would supplement the advancement in soft design technology. Therefore, it is no wonder that AM technique has been identified as one of the transformational technology for the future manufacturing sector. This project is tackling two major barriers to implementation of AM technology for applications such as making aircraft. These are the very high cost of the process and the properties of the material that is being deposited. In the present programme the multi-disciplinary team seeks to investigate the development of AM processes that are overcome the barriers. This includes a new AM process based around the use of the laser combined ways a new method of adding material. We are also developing a new process to go with the AM process which transforms the properties of the material so that it is similar to the material currently used on aircraft. This new process uses techniques like rolling to introduce cold work into the metal; this changes the structure of the material at the microscopic level. Finally manufacturing of complex shapes, out of position (not vertical down) and multi-axes deposition and integrated machining will be evaluated for production of near net shape from a single process. The research programme would also study the feasibility of developing an innovative and non-destructive way of online process control of microstructure by Spatially Resolved Acoustic Spectroscopy (SRAS) technique. The consortium is carefully formed with complimentary knowledge base between the partners so that a significant progression can be made within the project span. This cross continental activity will help in leveraging the tacit knowledge base through regular visits; web based discussions and investigator exchange programme. The project is expected to solve the major issues identified in AM Technology, leading to its early application in industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S022139/1
    Funder Contribution: 5,695,180 GBP

    This proposal seeks funding to create a Centre for Doctoral Training (CDT) in Connected Electronic and Photonic Systems (CEPS). Photonics has moved from a niche industry to being embedded in the majority of deployed systems, ranging from sensing, biophotonics and advanced manufacturing, through communications from the chip-to-chip to transcontinental scale, to display technologies, bringing higher resolution, lower power operation and enabling new ways of human-machine interaction. These advances have set the scene for a major change in commercialisation activity where electronics photonics and wireless converge in a wide range of information, sensing, communications, manufacturing and personal healthcare systems. Currently manufactured systems are realised by combining separately developed photonics, electronic and wireless components. This approach is labour intensive and requires many electrical interconnects as well as optical alignment on the micron scale. Devices are optimised separately and then brought together to meet systems specifications. Such an approach, although it has delivered remarkable results, not least the communications systems upon which the internet depends, limits the benefits that could come from systems-led design and the development of technologies for seamless integration of electronic photonics and wireless systems. To realise such connected systems requires researchers who have not only deep understanding of their specialist area, but also an excellent understanding across the fields of electronic photonics and wireless hardware and software. This proposal seeks to meet this important need, building upon the uniqueness and extent of the UCL and Cambridge research, where research activities are already focussing on higher levels of electronic, photonic and wireless integration; the convergence of wireless and optical communication systems; combined quantum and classical communication systems; the application of THz and optical low-latency connections in data centres; techniques for the low-cost roll-out of optical fibre to replace the copper network; the substitution of many conventional lighting products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Many of these activities will increasingly rely on more advanced systems integration, and so the proposed CDT includes experts in electronic circuits, wireless systems and software. By drawing these complementary activities together, and building upon initial work towards this goal carried out within our previously funded CDT in Integrated Photonic and Electronic Systems, it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required technical expertise, responsible innovation (RI), commercial and business skills to enable the £90 billion annual turnover UK electronics and photonics industry to create the closely integrated systems of the future. The CEPS CDT will provide a wide range of methods for learning for research students, well beyond that conventionally available, so that they can gain the required skills. In addition to conventional lectures and seminars, for example, there will be bespoke experimental coursework activities, reading clubs, roadmapping activities, responsible innovation (RI) studies, secondments to companies and other research laboratories and business planning courses. Connecting electronic and photonic systems is likely to expand the range of applications into which these technologies are deployed in other key sectors of the economy, such as industrial manufacturing, consumer electronics, data processing, defence, energy, engineering, security and medicine. As a result, a key feature of the CDT will be a developed awareness in its student cohorts of the breadth of opportunity available and the confidence that they can make strong impact thereon.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V039210/1
    Funder Contribution: 812,734 GBP

    Composite materials are becoming increasingly important for light-weight solutions in the transport and energy sectors. Reduced structural weight, with improved mechanical performance is essential to achieve aerospace and automotive's sustainability objectives, through reduced fuel-burn, as well as facilitating new technologies such as electric and hydrogen fuels. The nature of fibre reinforced composite materials however makes them highly susceptible to variation during the different stages of their manufacture. This can result in significant reductions in their mechanical performance and design tolerances not being met, reducing their weight saving advantages through requiring "over design". Modelling methods able to simulate the different processes involved in composite manufacture offer a powerful tool to help mitigate these issues early in the design stage. A major challenge in achieving good simulations is to consider the variability, inherent to both the material and the manufacturing processes, so that the statistical spread of possible outcomes is considered rather than a single deterministic result. To achieve this, a probabilistic modelling framework is required, which necessitates rapid numerical tools for modelling each step in the composite manufacturing process. Focussing specifically on textile composites, this project will develop a new bespoke solver, with methods to simulate preform creation, preform deposition and finally, preform compaction, three key steps of the composite manufacturing process. Aided by new and developing processor architectures, this bespoke solver will deliver a uniquely fast, yet accurate simulation capability. The methods developed for each process will be interrogated through systematic probabilistic sensitivity analyses to reduce their complexity while retaining their predictive capability. The aim being to find a balance between predictive capability and run-time efficiency. This will ultimately provide a tool that is numerically efficient enough to run sufficient iterations to capture the significant stochastic variation present in each of the textile composite manufacturing processes, even at large, component scale. The framework will then be applied to industrially relevant problems. Accounting for real-world variability, the tools will be used to optimise the processes for use in design and to further to explore the optimising of manufacturing processes. Close collaboration with the project's industrial partners and access to their demonstrator and production manufacturing data will ensure that the tools created are industry relevant and can be integrated within current design processes to achieve immediate impact. This will enable a step change in manufacturing engineers' ability to reach an acceptable solution with significantly fewer trials, less waste and faster time to market, contributing to the digital revolution that is now taking place in industry.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
1 Organizations, page 1 of 1

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.