Powered by OpenAIRE graph
Found an issue? Give us feedback

Pforzheim University of Applied Sciences

Pforzheim University of Applied Sciences

9 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101077587
    Overall Budget: 37,839,600 EURFunder Contribution: 24,198,300 EUR

    During the past few years many projects and initiatives were undertaken deploying and testing Automated Vehicles (AVs) for public transportation and logistics. However in spite of their ambition, all of these projects stayed on the level of elaborated experimentation and never reached the level of a large-scale commercial deployment of transport services. The reasons for this are many, the most important being the lack of economically viable and commercially realistic models, the lack of scalability of the business and operating models, and the lack of user oriented services required for large end-user adoption of the solutions. The ULTIMO project will create the very first economically feasible and sustainable integration of AVs for MaaS public transportation and LaaS urban goods transportation. ULTIMO aims to deploy in three sites in Europe 15 or more multi-vendor SAE L4 AVs per site. A user centric holistic approach, applied throughout the project, will ensure that all elements in a cross-sector business environment are incorporated to deliver large-scale on-demand, door-to-door, well-accepted, shared, seamless-integrated and economically viable CCAM services. We target the operation without safety driver on-board, in a fully automated and mission management mode with the support of innovative user centric passenger services. ULTIMO’s innovative transportation models are designed for a long-term sustainable impact on automated transportation in Europe, around the globe and on society. The composition of the consortium ensures the interoperability between multiple stakeholders by making adoption of new technology at minimum costs and maximum safety. The integration of the ongoing experiments of previous AV-demonstrator projects ensures highest possible technical and societal impacts from the very beginning of the project, as well as during the project lifetime and even long after its completion.

    more_vert
  • Funder: European Commission Project Code: 101058598
    Overall Budget: 11,179,900 EURFunder Contribution: 9,734,440 EUR

    Rare Earths (RE) are crucial materials for Europe's successful green and digital transition, thus classified as highly critical. The market for RE magnets itself is relatively small - about €6.5 billion - however its downstream leverage is enormous: the mobility business in the EU27 alone is expected to grow to about €500 billion by 2030, with 6 million jobs. While being a world leader in the manufacturing of e.g. electric motors, the EU27 is fully import-dependent along the entire value chain of RE magnet materials. Despite a growing market, European magnet production capacity is underutilised and tends to serve specialised niche applications. In addition, RE magnets are increasingly imported as part of motors and generator assemblies and products. The main reasons for these developments are that China has a monopoly in the RE supply chain across all stages from mining to refining. To overcome this issue, REEsilience will categorise RE for geographic locations, quantities, chemical composition, ethical and sustainable indicators, ramp-up scenarios, and pricing, considering all value streams from virgin to secondary material. It will build a production system that ensures a resilient and sustainable supply chain for RE as critical raw materials for the e-mobility, renewable energy and further strategic sectors in Europe with less dependencies on non-European economies. A newly-developed software tool will determine optimum mixing ratios to ensure consistently high product quality with maximum secondary materials for high-tech applications. Combined with new and improved technologies for alloy production and powder preparation, especially of secondary materials, the yield and stability of processes will be further enhanced, allowing further augmentation of the proportion of secondary materials in RE PM production, reducing at the same time waste, environmental damage, and consumption of energy linked with virgin production.

    more_vert
  • Funder: European Commission Project Code: 821114
    Overall Budget: 14,700,800 EURFunder Contribution: 12,977,400 EUR

    The aim of this project is to develop a recycling supply chain for rare earth magnets in the EU and to demonstrate these new materials on a pilot scale within a range of application sectors. Rare earth magnets based upon neodymium-iron-boron (NdFeB, also containing dysprosium) are used in a wide range of products, including for example clean energy technologies (wind turbines and electric vehicles) and high tech sectors such as electronics. However in recent years the supply of these materials has come under considerable pressure and neodymium and dysprosium are now deemed to be of greatest supply risk for all elements. The EU imports far more NdFeB magnets than it manufactures (>1,000 tonnes manufactured per annum). It has been estimated that ~ 2,000-3,000 tonnes/annum of NdFeB will be available by 2020 for recycling, which presents a significant opportunity. The aim of this project is to identify, separate, recycle and demonstrate recycled magnets at a pilot scale with a multidisciplinary team located across the EU. The project will target three of the main application sectors including automotive, electronics and wind turbines. The project will develop new sensing and robotic sorting lines for the identified EoL products, building upon technologies developed in the FP7 project Remanence. New hydrogen based technologies will be demonstrated at scale for separating and purifying NdFeB powders from the robotically sorted parts and this technology will be duplicated at another partner in the project. The separated powders will be re-manufactured into sintered magnets, injection moulded magnets, metal injection moulded magnets and cast alloys, at 4 different companies across 3 countries, building upon work in the Repromag Horizon 2020 project. A techno economic assessment will be performed for each potential recycling route alongside a life cycle assessment to assess the environmental benefits over primary production.

    more_vert
  • Funder: European Commission Project Code: 769033
    Overall Budget: 20,903,400 EURFunder Contribution: 15,599,800 EUR

    AVENUE aims to design and carry out full scale demonstrations of urban transport automation by deploying, for the first time worldwide, fleets of autonomous mini-buses in low to medium demand areas of 4 European demonstrator cities: Geneva, Lyon, Copenhagen and Luxembourg, and 3 replicator cities. AVENUE revisits the offered public transportation services, starting from the original problem, which is to allow passengers to move from one place to another. It takes into account their special needs and time constrains, instead of trying to accommodate autonomous vehicles to the existing solutions of pre-scheduled bus itineraries. In this context, AVENUE introduces disruptive public transportation paradigms led by SMEs on the basis of door2door services and the nascent concept of the ‘Mobility Cloud’ aiming in setting up a new model of public transportation. This model enables safe, efficient, on-demand and emission free personalised public transportation, available anytime and anywhere, blending conventional public transport with novel service models such these of the sharing economy. The project partners will apply cutting edge technologies and I2V, V2I & V2V communications that will allow a twofold increase of the average vehicle speed and a tenfold increase in the range served by autonomous vehicles. A set of corresponding in- and out-of-vehicle services that substantially enhance road safety, the overall quality of the service and the value added to the passenger will be introduced, targeting also elderly people, people with disabilities and vulnerable users. AVENUE draws and builds upon the accumulated experience from its consortium of 16 partners from 7 European countries, and the operation of Navya’s 65 mini-buses in 22 cities from 13 countries in 4 continents that already demonstrate reliable and safe operation at pilot sites by transporting over 180,000 passengers. The project activities are organised in 10 workpackages that are implemented within 4 years.

    more_vert
  • Funder: European Commission Project Code: 101147226
    Overall Budget: 4,010,530 EURFunder Contribution: 3,997,030 EUR

    REWIND aims at developing critical technologies for dismantling end-of-life (EoL) wind turbine blades (WTB) (evaluation, advanced cutting, etc.) and implementing new methodologies for composites repurposing and recycling (catalytic pyrolysis and solvolysis) to increase the circularity of WTB, increasing the industrial applications of the EoL composites, and avoiding the current landfilling or incineration. The main composition of the composite waste is expected to be epoxy resin/carbon fibre (CF), epoxy resin/glass fibre (GF) and polyester resin/GF. The new methodologies will address the following challenges: 1) Study and development of suitable disassembly, quality inspection and characterisation of the composite waste, to be able to understand composite waste properties. As a result, it will be possible to decide if composite parts from EoL products should be repurposed or recycled depending on their value. 2) Show potential high-value applications for composite end-of-life: repurposing will be demonstrated through manufacturing 2 demonstrators (for construction and automotive sector). This will be done by matching specified requirements with dismantled materials using software and hardware tools to facilitate the fragmentation processes. 3) New innovative pyrolysis and solvolysis methods for recycling will be developed and tested to significantly reduce the processing temperature and time for those parts that cannot be used in repurposing. This will allow to save energy, and together with the post-treatments, improving the quality of the materials recovered (e.g., weaved fibres, sized fibres, recycled polyester resin, recycled epoxy resin and epoxy vitrimer resins based on recycled monomers). Secondary raw materials obtained will be used to manufacture 2 demonstrators for wind energy sector: a small wind blade root section and composites patches for blades repairing. REWIND technologies should be scalable to process high volumes of waste in the near future.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.