Powered by OpenAIRE graph
Found an issue? Give us feedback

Keysight Technologies (Austria)

Keysight Technologies (Austria)

12 Projects, page 1 of 3
  • Funder: European Commission Project Code: 280516
    more_vert
  • Funder: European Commission Project Code: 317116
    more_vert
  • Funder: European Commission Project Code: 764479
    Overall Budget: 3,300,160 EURFunder Contribution: 3,300,160 EUR

    EMERALD (ElectroMagnetic imaging for a novel genERation of medicAL Devices) is the coherent action of leading European engineering groups involved in electromagnetic (EM) technology for medical imaging to form a cohort of highly-skilled researchers capable of accelerating the translation of this technology “from research bench to patient bedside”. Nowadays, medical imaging technologies play a key role to face the ever-growing number of challenges due to aging populations, as they are the essential clinical tool to deliver accurate initial diagnosis and monitor the evolution of disease over time. For this reason, a whole range of new imaging modalities is currently being developed to supplement and support current modalities. Among these technologies, there is EM imaging, which involves the illumination of the portion of the body under investigation with low-power non-ionizing EM waves (in the microwave spectrum) and the use of the resultant backscattered signals to generate images of the internal structures of the body. The scientific objective pursued by the EMERALD action is to accelerate translation of research in EM medical imaging into clinical prototypes. To this end, EMERALD will establish a group of 13 outstanding early stage researchers who will be the European leaders in this field, through a unique scientific and training programme. The EMERALD trained researchers will drive the future developments of EM imaging technology, thanks to the targeted skills, they will attain, and their established connections with clinicians and stakeholders. The EMERALD consortium involves academic institutions, industrial partners, hospitals and university medical centers (as partner organizations). The success of EMERALD will ensure that all achieved innovative technological developments will be translated into benefits to the end user community and potentially taken to market, with an impact on both the European society and scientific community.

    more_vert
  • Funder: European Commission Project Code: 721874
    Overall Budget: 3,593,490 EURFunder Contribution: 3,593,490 EUR

    Advanced Microscopy techniques are widely recognized as one of the pillars onto which the research and manufacture of Nanotechnology based products is sustained. At present, the greatest challenge faced by these techniques is the realization of fast and non-destructive tomographic images with chemical composition sensitivity and with sub-10 nm spatial resolution, in both organic and inorganic materials, and in all environmental conditions. Scanning Probe Microscopes are currently the Advanced Microscopy techniques experiencing the fastest evolution and innovation towards solving this challenge. Scanning Probe Microscopes have crossed fundamental barriers, and novel systems exist that show potential unparalleled performance in terms of 3D nanoscale imaging capabilities, imaging speed and chemical sensitivity mapping. The objective of the SPM2.0 European Training Network is to train a new generation of researchers in the science and technology of these novel Scanning Probe Microscopes, in which Europe is currently in a leading position, in order to enforce its further development and its quick and wide commercialization and implementation in public and private research centers and industrial and metrology institutions. The researchers of the network will acquire a solid state-of-the-art multidisciplinary scientific training in this field of research, covering from basic science to industrial applications, which should enable them to generate new scientific knowledge of the highest impact. In addition, they will receive a practical training on transferable skills in order to increase their employability perspectives and to qualify them to access to responsibility job positions in the private and public sectors. The final aim of the network is to consolidate Europe as the world leader in Scanning Probe Microscopy technologies and its emerging applications in key sectors like Materials, Microelectronics, Biology and Medicine.

    more_vert
  • Funder: European Commission Project Code: 761036
    Overall Budget: 3,992,180 EURFunder Contribution: 3,992,180 EUR

    Products which require complicated material systems and nanoscale structural organization, e.g. third-generation solar cells, are often difficult to develop. This is because electronic properties of bulk semiconductors are often masked or at least strongly superimposed by material interface properties. Additionally these interface properties are also complex and thus make product design difficult. This project aims at solving this problem by offering a nanoscale characterization platform for the European manufacturers of coatings, photovoltaic cells, and semi-conductor circuits. It is proposed to use a combination of scanning microwave microscopes, dielectric resonators, and simulation to measure the material and interface properties of complicated material systems and nano-structures. A metrological system of cross-checks between different instruments, models and simulations with associated error bars is indispensable for obtaining trustworthy results. Scanning microwave measurements will be directly used for three-dimensional characterization of electrical properties of nanostructured semiconductors used in organic and hybrid photovoltaic cells. The objective is to accelerate the development of high efficiency cells and to have measures to predict performances in early stages of prototype production. Where process monitoring of materials with nanostructures is necessary, a dielectric resonator is used to translate insights from scanning microwave microscope measurements to fabrication environments. Such dielectric resonators could be directly integrated in production lines for monitoring thin film deposition processes. An open innovation environment will make the uptake of the results easier for European industry. A database containing exemplary measurement datasets of scanning microwave microscopes will be available in calibrated and raw versions. Simulation results of tip-semiconductor interactions will be made available on the EMMC Modeling Market Place.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.