Powered by OpenAIRE graph
Found an issue? Give us feedback

EPIC

European Photonics Industry Consortium
20 Projects, page 1 of 4
  • Funder: European Commission Project Code: 737801
    Overall Budget: 2,572,780 EURFunder Contribution: 1,987,610 EUR

    PULSe's objective is to optimize, industrialize and create the conditions for a market exploitation of the first cost -effective Brillouin distributed sensing solution based on a synergy of innovations on interrogator equipment, strain sensing cable and open-access application support tools.

    more_vert
  • Funder: European Commission Project Code: 825132
    Overall Budget: 5,121,690 EURFunder Contribution: 5,121,690 EUR

    Current industrial markets demand highly value added products offering new features at a low-cost. Bio-inspired surface structures, containing features in the nanometer/micrometer scales, offer significant commercial potential for the creation of functionalized surfaces. In this aim technologies to modify surfaces instead of creating composites or spreading coatings on surfaces can offer new industrial opportunities. In particular, laser surface texturing, has shown to be capable to obtain advanced functionalities, especially when sources operating at pulse durations of nanosecond (short) and picosecond and femtosecond (ultra short) are used. LAMPAS will significantly increase the potential of laser structuring for the design of newly functionalized surfaces by enhancing the efficiency, flexibility and productivity (over 1 m²/min) of the process based on the development of a high power ultra-short laser system as well as strategies and concepts for beam delivery. This will be performed by combining the outstanding characteristics of two laser technologies, being Direct Laser Interference Patterning and Polygon Scanner processing. The expected results to be obtained in this project will provide the European industry with a cost effective and robust technology, capable of producing a broad range of functional surfaces on large areas at outstanding throughputs, bringing Europe a chance to lead in this key area of surface treatment. LAMPAS consortium covers the full value chain for laser surface texturing and has access to demanding markets. In addition, an in-line surface characterisation to enable rapid feedback about the target topography as well as to control surface temperature during the laser process will be included.

    more_vert
  • Funder: European Commission Project Code: 951998
    Overall Budget: 8,127,490 EURFunder Contribution: 7,999,270 EUR

    Digitizing European industry is essential for European competitivity in the 21st century, but only 1/5 of EU SMEs is highly digitised. Laser Based Advanced and Additive Manufacturing (LBAAM) technologies are regarded as Key Enablers for Digital Production and offer important advantages to the adopters. SMEs have strong entry barriers for the technology: Investment cost, technology complexity, system integration and awareness/adoption readiness. PULSATE aims to lower all said barriers to boost the adoption of Laser Based technologies by SMEs and promote the development of SME-friendly laser based equipment and solutions. PULSATE will establish a Pan-European Network to stimulate SMEs to take part in Innovation Ecosystem of LBAAM, by connecting Digital Innovation Hubs (DIHs) to a support structure of knowledge, infrastructure and services, designed to tackle the issues currently limiting the adoption of LBAAM technology. A balanced combination is proposed between wide outreach using interconnected Virtual Communities and ICT tools (a Single Entry Point will connect a wide range of networking and servicing tools), and close exchange and interaction via DIHs. The project relies on a consortium of 6 competence centres (AIMEN, FTMC, MTC, SINTEF, Fraunhofer, CEA), service community and marketplace providers (FBA, CLESGO) and a photonics industry association (EPIC). With >50 previous projects outcomes, existing tools and services, connections with 74 running DIHs, Clusters and regional initiatives, PULSATE counts with the explicit support of companies and institutions (>80LoS), and an independent Board of Stakeholders gathering key players in LBAAM will ensure the quality and pertinence of PULSATE orientation. PULSATE will operate under 4 action areas: Business, Technology, Competence & Awareness, addressing the following technology domains: Nano/Micro Fabrication, AM, High Power Laser Manufacturing and Digitisation, and implementing 4 Open Calls and a catalogue of services.

    more_vert
  • Funder: European Commission Project Code: 688510
    Overall Budget: 4,249,160 EURFunder Contribution: 4,249,160 EUR

    Optical communications are becoming always more relevant because of the continuous growth of the requiested bandwidth. In the last decade we assisted a continuous growing of transport and metro netwotks, presently the bottleneck is in the processing of the huge amount of data constituted by the growing number of users, the capacity of the content that is exchanged and the convergence of Telecom and Datacom. This accumulation of data are elaborated and redirected within data centers with a continuous growing of traffic congestion. The continuous growth of traffic require therefore a roadmap of bandwidth density growth that necessarily has to be scalable on the timeframe of several years. To this point photonics plays a crucial role that is always more pervasive. However a major limiting factor is also arising from the energy cost and latency accumulated by the need of aggregation to route signals. To limitate this effect is necessary to make possible data exchange and processing without or with limited aggregation. Teraboard project consists in developing a full intra data center photonic platform for intraboard, intrarack and intra data center optical communications. The Teraboard interconnection platform will be based on ultra-high density and scalable bandwidth optical interconnectivity with low insertion loss and a target of lowest energy cost per channel of 2.5pJ/bit and a manufacturing cost of 0.1$/Gb/s in volumes. These target values are 10x reduction respect to commercial state of the art. Teraboard demonstrates: 1) passive, scalable, 3D inter processor interconnection layer, 2) novel WDM optical connector to plug the fiber ribbons directly onto the transceiver chip, 3) intraboard transceiver bank with high density bandwidth of 7Tb/s/cm2. Single wavelength laser arrays will be directly integrated on the silicon photonics transceiver circuits, 4) and edge single and four wavelength transceiver interface with bandwidth density of 50 and 7Tb/s/cm2 respectively.

    more_vert
  • Funder: European Commission Project Code: 258178
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.