Powered by OpenAIRE graph
Found an issue? Give us feedback

BIOPOX

BIOPOX SRL
Country: Italy
3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 860414
    Overall Budget: 3,709,260 EURFunder Contribution: 3,709,260 EUR

    The INTERfaces program will train 14 ESRs within an EID network jointly designed by European academic and industry partners in innovative research projects dedicated to developing clean bioprocesses for the production of chemicals. The assembly of biocatalysts to reaction sequences allows avoiding steps for isolation and purification of intermediates and thus a significant improvement of the environmental footprint of catalytic processes. The main goal of INTERfaces is the extension of this concept towards multi-step biocatalytic reactions in immobilized form. These “Heterogeneous Biocatalytic Reaction Cascades” will greatly facilitate re-use of the catalysts and further simplify downstream-processing. INTERfaces combines material science and protein engineering to design tailored enzymes and (bio-based) materials that will complement each other to obtain optimized heterogeneous biocatalysts. These tools will be applied to solve synthetic challenges in the use of two biobased monomers as starting materials to synthesize products for application fields like antioxidants and biopolymers. Process optimization and up-scale in industry will reveal key factors for synthetic utilization of the biocatalysts. INTERfaces emphasizes particularly the engineering of the designed cascades in solid phase. This includes the design of reactors, use of computational modeling tools, application of the right operational modes, and reaction medium needed for desired space-time-yields and product titers. Commercial relevant processes will be up-scaled together with industry for technical implementation. 13 Non-academic partners ranging from high-tech SMEs to large producing companies and 9 academic institutions offer an intersectoral and interdisciplinary environment to provide 14 Ph.D. candidates with outstanding employability profiles for the European Biotech Sector. Dedicated workshops and well-balanced supervisory team aim at increasing the gender diversity in biotech research.

    more_vert
  • Funder: European Commission Project Code: 654623
    Overall Budget: 5,989,740 EURFunder Contribution: 5,989,740 EUR

    WASTE2FUELS aims to develop next generation biofuel technologies capable of converting agrofood waste (AFW) streams into high quality biobutanol. Butanol is one of the most promising biofuels due to its superior fuel properties compared to current main biofuels, bioethanol and biodiesel. In addition to its ability to reduce carbon emissions, its higher energy content (almost 30% more than ethanol), its ability to blend with both gasoline and diesel, its lower risk of separation and corrosion, its resistance to water absorption, allowing it to be transported in pipes and carriers used by gasoline, it offers a very exciting advantage for adoption as engines require almost no modifications to use it. The main WASTE2FUELS innovations include: • Development of novel pretreatment methods for converting AFW to an appropriate feedstock for biobutanol production thus dramatically enlarging current available biomass for biofuels production • Genetically modified microorganisms for enhancing conversion efficiencies of the biobutanol fermentation process • Coupled recovery and biofilm reactor systems for enhancing conversion efficiencies of Acetone-Butanol-Ethanol fermentation • Development of new routes for biobutanol production via ethanol catalytic conversion • Biobutanol engine tests and ecotoxicological assessment of the produced biobutanol • Valorisation of the process by-products • Development of an integrated model to optimise the waste-to-biofuel conversion and facilitate the industrial scale-up • Process fingerprint analysis by environmental and techno-economic assessment • Biomass supply chain study and design of a waste management strategy for rural development By valorising 50% of the unavoidable and undervalorised AFW as feedstock for biobutanol production, WASTE2FUELS could divert up to 45 M tonnes of food waste from EU landfills, preventing 18 M tonnes of GHG and saving almost 0.5 billion litres of fossil fuels.

    more_vert
  • Funder: European Commission Project Code: 814400
    Overall Budget: 5,737,010 EURFunder Contribution: 5,737,010 EUR

    TERMINUS addresses the challenge of unlocking recycling and reuse of flexible multi-layer and multi-compounds packaging materials used for food, beverages, cosmetics, pet food, fertilisers, any perishable goods in general. It will develop a range of smart enzyme-containing polymers with triggered intrinsic self-biodegradation properties, acting as adhesives or tie layers in the design and manufacturing of multi-layer plastics for food and non-food applications. The technology will be applied to biodegradable PUR-based adhesives for adhesive lamination and extrusion coating lamination, and polymers and tie layers (PBS, PLA, PPC or PCL) in blown extrusion. TERMINUS will base its innovative and challenging objectives on a cross-disciplinary team of renowned organizations with expertise in enzymatic biodegradation of polymers, thermal protection of enzymes using nm organosilica and layered double hydroxide, cyclodextrins, UV and water triggered enzymatic activity, formulation of advanced polymers, manufacturing of multilayer plastic packaging, plastics recycling. TERMINUS is based on TRL3 technologies and will reach TRL5. It will result in major market opportunities for European industrials in several well established markets ready for market opportunities: plastic packaging (TPPS, STTP), industrial enzyme applications (BIOPOX), PUR adhesives (COVESTRO), biodegradable plastics (IPC), biotech plants (OWS), mechanical recycling (SIGMA). At least 15% of improvement of economic efficiency vs. current solutions (landfilling, incineration) are expected. A reduction of landfilling for multi-layer plastic packaging over 80% together with a reduction of overall plastic landfilling by 55% will be achieved with a minimum decrease by 65% of the overall CO2 footprint. TERMINUS will be a breakthrough in reaching the 2030 European Commission objective to recycle 100% plastic packaging.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.