
Frenchay Hospital
Frenchay Hospital
4 Projects, page 1 of 1
assignment_turned_in Project2012 - 2019Partners:North Bristol NHS Trust, Frenchay HospitalNorth Bristol NHS Trust,Frenchay HospitalFunder: UK Research and Innovation Project Code: MC_PC_14095Funder Contribution: 3,429,900 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b543fc5c2b7dda240bb4100a05badadb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b543fc5c2b7dda240bb4100a05badadb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2015Partners:Frenchay Hospital, University of Bath, Frenchay Hospital, University of Bath, North Bristol NHS Trust +2 partnersFrenchay Hospital,University of Bath,Frenchay Hospital,University of Bath,North Bristol NHS Trust,Biocontrol Ltd,BIOTRONICS LTDFunder: UK Research and Innovation Project Code: EP/I027602/1Funder Contribution: 657,967 GBPThis project, in partnership with Biocontrol Ltd and the departments of Chemistry and Chemical Engineering at the University of Bath, will encapsulate specific lytic phages within phospholipid vesicles, and incorporate the vesicles into a prototype burn / wound dressing and a topical aqueous cream. The primary focus of the work is in the prevention of infection of paediatric burns, where our clinical partner, Dr Amber Young at the South West Paediatric Burns Centre, Frenchay hospital will provide expertise. The vesicles will be designed such that they both will stabilize the phage over time i.e. when stored, but only release their contents following exposure to secreted toxins and enzymes from pathogenic bacteria. The aim of this project is to reduce the risk of infection from burns and other injuries by making a 'smart' dressing, based on phage therapeutics.38,000 children on average suffer burn injuries in England and Wales each year, of which 55% are scalds. Most are small in area, 80% are in children under five years and the majority are due to hot drink spillages. One of the primary problems in the treatment of burns is bacterial infection, which can delay healing, increase pain; increase the risk of scarring and in some cases cause death. In recent years there have been great improvements in the treatment of burns, particularly with biologically-derived dressings which actively promote cell growth. However, the problem of infection has not gone away, and there is evidence that silver treated antimicrobial dressings can delay burn healing.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6ac907b18caf5cbef0363d27d6c13eff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6ac907b18caf5cbef0363d27d6c13eff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2015Partners:ICR, Dartmouth College, University of Bristol, Dartmouth College, University of Oxford +6 partnersICR,Dartmouth College,University of Bristol,Dartmouth College,University of Oxford,Frenchay Hospital,Frenchay Hospital,North Bristol NHS Trust,Institute of Cancer Research,University of Bristol,Dartmouth CollegeFunder: UK Research and Innovation Project Code: EP/I004386/1Funder Contribution: 743,121 GBPMicrowave Imaging (MI) has gained a great deal of attention among researchers over the past decade, mainly due to its potential use in breast cancer imaging. MI is seen as a safe, portable and low-cost alternative to existing imaging modalities. Due to the breast tissue properties at microwave frequencies, MI benefits from significantly higher contrast than other techniques. The great excitement about MI radar system is that, using a multi-static real aperture technique and sophisticated signal processing, it has sufficient resolution to be clinically useful and is far better than simple wavelength assumptions would estimate. Whilst to date MI has been mainly proposed for breast cancer detection, some recent reports have also speculated a use of MI in extremities imaging, diagnostics of lung cancer, brain imaging and cardiac imaging. Despite the interest in Microwave Imaging among researchers, it has not moved far beyond numerical simulations and very simple experimental works without clinical realisation. Bristol is among two research groups in the world who have clinical experience with Microwave Imaging.Compared with other medical imaging techniques, microwave imaging is still in its infancy. One historical reason for this might due to the fact that most microwave systems-devices originated in military applications, radar being an obvious example. In recent years however, due to the mobile/wireless revolution, we have witnessed unprecedented progress in high performance microwave hardware as well as computing power. This opens up a unique opportunity for development of microwave imaging systems. The goal of this Career Acceleration Fellowship project is to explore a novel direction in MI, Differential Microwave Imaging (DMI), in clinical applications reaching far beyond breast cancer detection. In Differential Microwave Imaging, the goal is to image temporal changes in tissue, and not the tissue itself. This somewhat limits usability of DMI as an imaging technique on one hand, but at the same time it opens up totally new applications where standard Microwave Imaging could not be applied. The idea of DMI came from the discovery during world's first clinical trial of microwave radar imaging system in Bristol in 2009. During the clinical trials it was realised that the Microwave Imaging system was extremely sensitive to any changes occurring during the scan. Following this up it was then discovered that the local change in tissue properties can easily be detected and precisely located. Moreover, it was shown that this change in local properties of tissues can even be detected in very dense and heterogeneous breast tissues. The project will focus on two applications, serving as Proof of Principle:1. Nanoparticle contrast-enhanced DMI for cancer detection The proposed work on 3D detection of nanoparticles is of great interest to researchers working in the cancer imaging field. DMI could find applications not only in cancer detection, but it could also be used to find and evaluate the effectiveness of new cancer biomarkers, track nanoparticle-labelled cells or monitor delivery of nanoparticles for hyperthermia treatment. 2. Functional brain imaging using DMI radar systemDMI, as a general method, is also a promising concept for functional brain imaging. Development of the DMI system for functional brain imaging is timely related to current research activities in neuroscience. Functional imaging is used to diagnose metabolic diseases and lesions (such as Alzheimer's disease or epilepsy) and also for neurological and cognitive psychology research. This novel interdisciplinary project connects the fields of electronic engineering, nanotechnology and medical physics. The proposed research project addresses one of the EPSRC strategic priorities: Towards next generation healthcare. High calibre of clinical collaborators will ensure that research outcomes are relevant to end users.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::00f65761d2b92610594b34a49b3e1a84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::00f65761d2b92610594b34a49b3e1a84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2014Partners:University College London Hospitals, Frenchay Hospital, UCL, University College London Hospital (UCLH) NHS Foundation Trust, GlaxoSmithKline (United Kingdom) +7 partnersUniversity College London Hospitals,Frenchay Hospital,UCL,University College London Hospital (UCLH) NHS Foundation Trust,GlaxoSmithKline (United Kingdom),North Bristol NHS Trust,Frenchay Hospital,GSK,Philips Research Laboratories,GlaxoSmithKline PLC,University College Hospital,Philips Research LaboratoriesFunder: UK Research and Innovation Project Code: EP/G007748/1Funder Contribution: 1,608,400 GBPThe research will produce a new imaging paradigm called active imaging . Traditional imaging techniques are designed by physicists; medical or biological researchers use them if they provide useful contrast between different types of material or correlate with interesting effects. Recent trends in medical imaging are towards quantitative imaging techniques that combine biophysical models of tissue with traditional imaging techniques to provide more specific information relevant to particular applications. Active imaging extends this idea to exploit biophysical models more completely to design the imaging techniques themselves. More specifically, the technique uses optimization algorithms to search for combinations of images that provide the most information about the biophysical model and the best estimates of biologically relevant quantities.For example, Alzheimer's diseaseattacks and destroys brain cells. It leaves holes in brain tissue and deposits of unusual proteins. Brain tissue from Alzheimer's patients looks very different to normal tissue under a microscope, but the differences are not apparent on images from standard techniques like magnetic resonance imaging (MRI). Even techniques like diffusion-tensor MRI, which has acute sensitivity to tissue microstructure, show only moderate contrast. A broader class of technique, called diffusion MRI, measures the scattering of water molecules in tissue. The tissue microstructure controls the scatter pattern and so diffusion MRI provides information about the microstructure. Diffusion-tensor MRI provides only particular features of the scatter pattern that happen to be insensitive to the microstructural changes in Alzheimer's. However, we can tune the sensitivity of diffusion MRI in an almost infinite number of other ways. Active imaging will use a model of the microstructural changes in Alzheimer's to find the precise combination of diffusion MRI measurements that is most sensitive to those changes and discriminates them most successfully from normal tissue or other diseases.The project considers three diseases: Alzheimer's, multiple sclerosis and focal cortical dyplasia (a common cause of epilepsy). Each has characteristic abnormalities in brain tissue microstructure that current imaging techniques do not reveal reliably. The project will construct biophysical models of the abnormalities and use active imaging to devise diffusion MRI techniques that reveal them. The project will also use active imaging to tune diffusion MRI to reveal specific microstructural features of normal brain tissue, such as size and density of axons in white matter. No current technique can image these features in live subjects, but the information would provide fundamental new information about the structure and function of the brain. The active-imaging paradigm extends to almost any other imaging technique including other MRI techniques, X-ray or optical tomography or positron-emission tomography (PET). Although the project focusses on active imaging for diffusion MRI, it also aims to initiate follow-on projects to explore applications to other diseases (such as cancers) and other imaging techniques.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f025c8d0b38fb291450395bae59e3673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f025c8d0b38fb291450395bae59e3673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu