Powered by OpenAIRE graph
Found an issue? Give us feedback

LIKAT

Leibniz Institute for Catalysis
15 Projects, page 1 of 3
  • Funder: European Commission Project Code: 101058872
    Funder Contribution: 189,687 EUR

    Light olefins have been considered fundamental feedstocks in the chemical industry for decades. Current industrial processes for the synthesis of light olefins include naphtha cracking and light alkane dehydrogenation in thermochemical processes are under harsh conditions, and therefore energy-intensive. In the last decade, the solar-to-chemicals conversion process has attracted great attention, as it is deemed that the utilization of solar energy for the replacement of traditional fossil fuels is an ideal solution to the energy crisis and global warming. However, even though several reaction processes have been extensively studied and progress has been achieved, such as photocatalytic water splitting and photothermal/photocatalytic CO2 reduction, light-assisted alkane dehydrogenation reactions for the sustainable production of alkenes has not been explored yet. The objective of this research proposal is twofold: 1) developing new catalyst based on trimetallic clusters confined in Zr-based MOFs (TMC-MOF) for the photo-assisted light alkane dehydrogenation under mild conditions (<150oC), and 2) understanding the mechanism of the photo-assisted process, providing principles for design more efficient catalysts. The present project represents a significant step forward by showing the applicability of the solar-assisted alkane dehydrogenation process, presenting a significant advantage in terms of CO2-footprint.

    more_vert
  • Funder: European Commission Project Code: 792177
    Overall Budget: 171,461 EURFunder Contribution: 171,461 EUR

    Nitrogen plays a vital role in the production of sufficient crops to feed a growing global population. While atmospheric nitrogen cannot be directly assimilated by plants, bacteria can fix nitrogen under mild conditions to provide bio-available ammonia. In contrast, industrially ammonia is produced under harsh conditions in the Haber Bosch process, which is energy intensive and accompanied by massive emissions of CO2. Therefore, this project seeks to explore more sustainable pathways of dinitrogen activation and its subsequent functionalization. The utilization of renewable N2 is also in line with the “Resource-efficient Europe” flagship initiatives to optimize the use of materials in order to lower the environmental impact. Systems capable of dinitrogen activation in homogenous solution usually build on highly reduced transition metal complexes. In the proposed studies a novel class of polydendate ligands incorporating phosphaalkenes as a design feature will be synthesized to provide a potent platform for further functionalization. The experienced researcher will utilize these ligands as a donor to stabilize low-valent, highly reactive complexes of the bio-relevant metals molybdenum and vanadium. In a last step these systems will be tested in the activation of dinitrogen and their electronic structure will be comprehensively characterized, in a collaborative manner within the host institute, providing the applicant with high-quality technical training. The project links various sub-disciplines of chemistry and is therefore clearly interdisciplinary, combining the applicants experience in inorganic chemistry with the host-institute’s leadership in catalysis. It is therefore expected that the proposed studies represent an opportunity for the experienced researcher to acquire new skills in the design of ligands for novel complexes capable of nitrogen activation, which is expected to further sharpen the researcher's profile and to benefit his future career.

    more_vert
  • Funder: European Commission Project Code: 328500
    more_vert
  • Funder: European Commission Project Code: 670986
    Overall Budget: 2,499,380 EURFunder Contribution: 2,499,380 EUR

    The major objective of this proposal is the development of new active and selective catalysts based on earth abundant metals (e.g. Fe, Mn, Co, Cu). These catalysts will be used for improved synthetic transformations which are of interest for organic chemistry in general and which are also of significant practical value for the chemical and life science industries. Traditional catalysts based on non-noble metals are not efficient for hydrogenation and dehydrogenation processes under mild conditions. However, by creating a suitable microenvironment with M-N interactions they are becoming active and selective. According to our concept the suitable surrounding will be created either by using nitrogen-containing pincer ligands or nitrogen-doped graphenes. Consequently, a variety of both molecular-defined homogeneous catalysts as well as nano-structured heterogeneous materials will be prepared, characterized and tested in various catalytic applications. More specifically, the following redox transformations will be investigated: Hydrogenation and transfer hydrogenation of carboxylic acids, esters, and nitriles; hydrogenation of amides and peptides; hydrogenation of carbon dioxide and selective oxidative coupling of alcohols to esters, amides, and nitriles. Furthermore, “waste-free” carbon-carbon bond forming reactions such as alkylations with alcohols and domino-synthesis of heterocycles from alcohols will be exploited. Finally, homogeneous and heterogeneous catalysts from earth abundant metals will be used in industrially relevant oxidative carbonylation reactions. With respect to methodology this proposal combines homogeneous with heterogeneous catalysis, which will result in new ideas for both fields.

    more_vert
  • Funder: European Commission Project Code: 675325
    Overall Budget: 1,274,460 EURFunder Contribution: 1,274,460 EUR

    The HUGS concept ( HUmins as Green and Sustainable precursors of eco-friendly materials and biofuels) discloses an integrated multidisciplinary EID proposal with involvement of high-tech SME’s two research centers and 3 world class universities in the area of biorefinery. All partners have been chosen by their complementary expertise and their extensive experience in supervising PhD programs and coordinating international scientific projects. The proposed methodology and approach focuses on side-stream valorization of FDCA/PEF polyester production process developed by Avantium. HUGS aims to provide breakthrough knowledge combined with an excelling training program on humin by-products by implementing work packages which will respectively focus on side streams to building blocks; building blocks to composites; safety and toxicity aspects; training and dissemination activities and management, communication and public engagement. 5 PhD are envisaged to be recruited to reach these ambitious goals with regards to multidisciplinary training and beyond stateof-the-art research. Each PhD will be seconded at the company as well as between the collaborating universities aiming to develop a number of essential leadership, entrepreneurial, communication and scientific skills in program fellows. All partners will organize week-long dedicated training courses in their field of expertise (homo- & heterogeneous catalysis, physico-chemical polymer analyses, toxicity and safety, IPR, techno-economic evaluation) over the total duration of the project. The proposed research is novel and highly original which will justify scientific publications in top-ranked journals together with a unique training program. PEF is unique in being the first technical superior and 100% biobased plastic to come to the market. The HUGS project as being closely linked to PEF commercialization which it will guarantee maximal exploitation of the results, communication and public engagement.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.