Powered by OpenAIRE graph
Found an issue? Give us feedback

Composites Evolution (United Kingdom)

Composites Evolution (United Kingdom)

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
8 Projects, page 1 of 2
  • Funder: European Commission Project Code: 881603
    Overall Budget: 149,703,008 EURFunder Contribution: 149,703,008 EUR

    This proposal describes the third core project of the Graphene Flagship. It forms the fourth phase of the FET flagship and is characterized by a continued transition towards higher technology readiness levels, without jeopardizing our strong commitment to fundamental research. Compared to the second core project, this phase includes a substantial increase in the market-motivated technological spearhead projects, which account for about 30% of the overall budget. The broader fundamental and applied research themes are pursued by 15 work packages and supported by four work packages on innovation, industrialization, dissemination and management. The consortium that is involved in this project includes over 150 academic and industrial partners in over 20 European countries.

    more_vert
  • Funder: European Commission Project Code: 952792
    Overall Budget: 20,000,000 EURFunder Contribution: 20,000,000 EUR

    The 2D Experimental Pilot Line (2D-EPL) project will establish a European ecosystem for prototype production of Graphene and Related Materials (GRM) based electronics, photonics and sensors. The project will cover the whole value chain including tool manufacturers, chemical and material providers and pilot lines to offer prototyping services to companies, research centers and academics. The 2D-EPL targets to the adoption of GRM integration by commercial semiconductor foundries and integrated device manufacturers through technology transfer and licensing. The project is built on two pillars. In Pillar 1, the 2D-EPL will offer prototyping services for 150 and 200 mm wafers, based on the current state of the art graphene device manufacturing and integration techniques. This will ensure external users and customers are served by the 2D-EPL early in the project and guarantees the inclusion of their input in the development of the final processes by providing the specifications on required device layouts, materials and device performances. In Pillar 2, the consortium will develop a fully automated process flow on 200 and 300 mm wafers, including the growth and vacuum transfer of single crystalline graphene and TMDCs. The knowledge gained in Pillar 2 will be transferred to Pillar 1 to continuously improve the baseline process provided by the 2D-EPL. To ensure sustainability of the 2D-EPL service after the project duration, integration with EUROPRACTICE consortium will be prepared. It provides for the European actors a platform to develop smart integrated systems, from advanced prototype design to small volume production. In addition, for the efficiency of the industrial exploitation, an Industrial Advisory Board consisting mainly of leading European semiconductor manufacturers and foundries will closely track and advise the progress of the 2D-EPL. This approach will enable European players to take the lead in this emerging field of technology.

    more_vert
  • Funder: European Commission Project Code: 953270
    Overall Budget: 16,673,000 EURFunder Contribution: 14,564,000 EUR

    Polyurethane (PUR) products, which include foams for building, construction, automotive and furniture and bedding, are petroleum-based and usually lack important properties. The need for sustainability in these industries leads to the development of cost-efficient processes and sustainable added-value products from low carbon footprint materials. The main objective of BIOMAT is to establish an Open Innovation Test Bed (TB) for the benefit of industries and SMEs, aiming to facilitate the cross-border partnership and accelerate innovation in nano-enabled bio-based insulation materials for these industries. Through the creation of a Single-Entry Point (SEP), SMEs and other industrial parties will have open access at a competitive price to physical facilities (pilot production lines) and services (characterisation, nanosafety, standardisation/regulation, business/marketing plans as well as technological and business-oriented mentoring) which will be focused on manufacturing and testing of nanoparticle-enabled functional PUR-based foams for the above mentioned industrial sectors. The SEP will follow all EC guidelines related to the establishment of new entities providing services through different testbeds across Europe. BIOMAT ecosystem will cover the entire Value Chain (VC) from fundamental biomaterials and functional nanoparticles to the final products and their proof of concept in an industrial environment, thus accelerating the market uptake of the new nano-enabled sustainable bio-based products. BIOMAT will, therefore, fill the existing gaps in the VC of these industrial sectors, by providing new services and support at different levels the use of such materials in these key industries.

    more_vert
  • Funder: European Commission Project Code: 785219
    Overall Budget: 88,000,000 EURFunder Contribution: 88,000,000 EUR

    This proposal describes the third stage of the EC-funded part of the Graphene Flagship. It builds upon the results achieved in the ramp-up phase (2013 - 2016) and the first core project (2016 - 2018), and covers the period April 2018 - March 2020. The progress of the flagship follows the general plans set out in the Framework Partnership Agreement, and the second core project represents an additional step towards higher technology and manufacturing readiness levels. The Flagship is built upon the concept of value chains, one of which is along the axis of materials-components-systems; the ramp-up phase placed substantial resources on the development of materials production technologies, the first core project moved to emphasise components, and the second core project will move further towards integrating components in larger systems. This evolution is manifested, e.g., in the introduction of six market-motivated spearhead projects during the Core 2 project.

    more_vert
  • Funder: European Commission Project Code: 737981
    Overall Budget: 2,606,550 EURFunder Contribution: 1,824,580 EUR

    The aim of the IntAir project is to refine the materials and upscale the manufacturing process for a new generation of aircraft interior composites that are cheaper, lighter and safer than the toxic, carcinogenic materials that are currently used. To meet the strict fire and weight requirements for aircraft interiors, the current solution is to use a fire-resistant composite made of phenolic resin with glass fibre reinforcement. However: - Phenolic parts are expensive due to long moulding times and need several hours of manual finishing. - The poor surface finish means that filler is needed, adding to the component weight - Phenolics have a poor health and safety footprint, as they emit toxic and carcinogenic materials during processing As a direct substitute for phenolic, this project focusses on a composite using polyfurfuryl alcohol (PFA), which gives cost, weight and safety benefits over phenolics: - A 34% reduction in moulding cycle time, and a 70% reduction in manual finishing, giving a 58% cost reduction over phenolics - PFA gives a significantly improved surface finish, reducing the use of filler by 70% and reducing average component weight by 4% - PFA composites are non-toxic, non-carcinogenic, eliminating health & safety concerns from the workplace Testing by prospective customers has shown that PFA composites can meet aircraft interior standards for mechanical and fire performance. However, the development has so far been limited to simple formulations on small-scale, prototype equipment which does not yet give the accuracy or scale needed. The overall objective of this project is therefore to improve the processability, optimise the properties and upscale the production process of PFA composites for aircraft interiors. Addressing these 3 issues will enable significant improvements in part cost, component weight and worker safety compared to phenolics, and will allow the material to be commercialised on aircraft manufacturing programmes.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.