auto_awesome_motion View all 6 versions


Natural Resources Canada
Country: Canada
7 Projects, page 1 of 2
  • Funder: UKRI Project Code: EP/K008781/1
    Funder Contribution: 347,135 GBP
    Partners: University of Leicester, SolarMetrics, NRCan, STFC - Laboratories

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres. However there is a lack of ground infrastructure in the Arctic to support communications via the standard VHF links (and over the Arctic Ocean such links are impossible) and communication via geostationary satellites is not possible above about 82 degrees latitude because of the curvature of the Earth. Thus for the high latitude flights it is necessary to use high frequency (HF) radio for communication. HF radio relies on reflections from the ionosphere to achieve long distance communication round the curve of the Earth. Unfortunately the high latitude ionosphere is affected by space weather disturbances that can disrupt communications. These disturbances originate with events on the Sun such as solar flares and coronal mass ejections that send out particles that are guided by the Earth's magnetic field into the regions around the poles. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. Often, the necessity to land and refuel for these longer routes further increases the fuel consumption. The work described in this proposal cannot prevent the space weather disturbances and their effects on radio communication, but by developing a detailed understanding of the phenomena and using this to provide space weather information services the disruption to flight operations can be minimised. The occurrence of ionospheric disturbances and disruption of radio communication follows the 11-year cycle in solar activity. During the last peak in solar activity a number of events caused disruption of trans-Atlantic air routes. Disruptions to radio communications in recent years have been less frequent as we were at the low phase of the solar cycle. However, in the next few years there will be an upswing in solar activity that will produce a consequent increase in radio communications problems. The increased use of trans-polar routes and the requirement to handle greater traffic density on trans-Atlantic routes both mean that maintaining reliable high latitude communications will be even more important in the future.

  • Funder: UKRI Project Code: NE/M005879/1
    Funder Contribution: 51,988 GBP
    Partners: University of Liverpool, Geophysical Institute of Peru (IGP), UNIVERSIDAD DE CHILE, NRCan, IFM GEOMAR

    The Peru-Chile subduction zone hosts many large earthquakes. A M8.8 earthquake occurred in northern Chile in 1877, and since then, no major event had re-ruptured the area prior to April 2014. The 500 km-long zone has therefore become known as the "North Chile seismic gap". In late March 2014, many small to moderate earthquakes occurred within this gap. Activity generally migrated slightly northwards. On 2 April 2014, a M8.2 earthquake occurred in the northern part of the preceding cluster, followed by many aftershocks, including a M7.6 event. Aftershock activity continues and, since the rest of the area has not experienced a major earthquake for well over a century, another large event in the area in the near future or medium term cannot be ruled out. In order to measure aftershock activity in the area of the seismic gap that ruptured recently, in addition to any other events that may occur nearby, we propose to install seismometers in the Peruvian coastal region and also offshore Chile. There are two main reasons for doing this. Firstly, the extra networks will dramatically improve station coverage around the seismic gap area, enabling us to generate detailed models of the subduction zone. This will be of great benefit for future analyses of seismic activity in this earthquake-prone area. Secondly, our records of the ongoing seismic activity will enable us to locate aftershocks accurately and infer what type of faulting occurred. This will enable us to build up a very detailed picture of how post-earthquake processes relate to preceding large seismic events. We will also use satellite radar images to construct maps of how the surface of the Earth has moved as a result of the recent seismic activity. These deformation maps can be used in computer models to estimate the location and magnitude of slip that occurred on faults beneath the surface - for instance, on the subduction zone interface, where the mainshock occurred. Essentially we are using surface measurements to infer sub-surface processes. Results from the seismological and satellite components of our project will be integrated to give us an in-depth understanding of the properties and processes occurring in the North Chile seismic gap. For instance, we will look at the spatial relationship between the area that ruptures in major earthquakes and the location of foreshock/aftershock sequences. Another important issue is to identify areas on the subduction zone interface that have not yet slipped, and that could therefore rupture in major earthquakes in the future.

  • Funder: UKRI Project Code: NE/X000435/1
    Funder Contribution: 605,887 GBP
    Partners: University of Liège, University of Edinburgh, University of Liverpool, University of Fribourg, Danish Meteorological Institute (DMI), NRCan

    The Greenland Ice Sheet is the world's largest single source of barystatic sea-level rise (c.20% total rise) and more than half of the mass lost annually from the ice sheet comes from surface melt-water runoff. This proportion, and its magnitude, is rising with continued climate warming but future projections, and societal planning for sea level rise impacts, are undermined by a fundamental source of uncertainty. Across the vast majority of the accumulation area of the Greenland Ice Sheet, we do not know how much of the water produced from surface melting refreezes in underlying firn (i.e. multi-year snow) or becomes runoff. When the surface of an ice sheet melts, the density and temperature of underlying snow, firn and impermeable ice combine to determine whether melt refreezes in the underlying snow and firn, or becomes runoff to the ocean. If meltwater can percolate to depth (e.g. up to c.10 m) and access cold, low density firn, it can refreeze creating a significant buffer between climate change and sea-level rise. Alternatively, if melt encounters shallow impermeable ice layers (themselves created by previous refreezing) within relatively warm firn, melt cannot reach the cold firn and more melt will become runoff. The difference between these two scenarios alone could double ice sheet runoff by the middle of the 21st century. We rely on model simulations of surface melt, refreezing and runoff to accurately project the future contribution of the Greenland Ice Sheet to sea level rise. However, model-based estimates of the annual refreezing capacity of the ice sheet over the last six decades differ dramatically and undermines their ability to converge towards a reliable range of future projections. A major cause of uncertainty follows from the quite different assumptions that models make about ice layer permeability that dramatically alters the ice sheet refreezing capacity. If ice layers in firn are assumed to be impermeable (permeable), they will inhibit (allow) meltwater percolation to depth, diminish (maintain) refreezing capacity, increase (decrease) runoff and hence increase (decrease) projected global sea level rise. Without an improved treatment of ice layer permeability, existing surface mass balance models cannot provide reliable projections of the future refreezing capacity of, and melt-water runoff from, the Greenland Ice Sheet, leaving the ice sheet's future contribution to sea level rise highly uncertain. Firstly, we need to know the physical and thermal conditions of snow and firn that control the effective permeability of relatively thin ice layers (<0.5m thick) since within our warming climate these are increasingly determining the depth to which meltwater can percolate and hence control the refreezing capacity of the underlying firn. To this end we will undertake temperature-controlled laboratory experiments, systematically simulating and monitoring snow/firn/ice melt/refreezing/runoff. Secondly, we need to model the effective permeability of ice layers in snow and firn and their sensitivity to changing external and internal conditions since these together control how much melt refreezes or becomes runoff. For this, our lab work will inform novel developments to modelling to simulate measured arctic ice cap snowpack evolution. Finally we will incorporate improved ice layer permeability criteria within ice sheet scale models of the Greenland Ice Sheet to generate more accurate simulations of runoff and refreezing during melt extremes and improve harmonisation of long-term mass balance model projections, consequently improving global sea level rise predictions over the next century. Multiple recent "exceptional" melt seasons have caused near surface ice layers to proliferate through previously low density firn. These extremes will be the new norm in the future so new model parameterisations are urgently required that can effectively characterise ice layer control on mass balance.

  • Funder: UKRI Project Code: NE/T003553/1
    Funder Contribution: 2,010,750 GBP
    Partners: University of Salford, National Fire Chiefs Council, Forestry Commission England, Royal Holloway University of London, Met Office, Moors for the Future Partnership, NRCan, England and Wales Wildfire Forum

    Wildfires have traditionally been perceived as a threat confined to regions such as Southern Europe or Australia. However, the global wildfire threat is expanding and recognition of wildfire hazard in the UK has grown substantially in recent years. In the eight financial years between April 2009 and March 2017 over 250,000 wildfire incidents were dealt with by the Fire and Rescue Services (FRS) in England alone. Individual events have been spatially extensive, challenging to fight (e.g. Saddleworth Moor, 2018), and have threatened property, transport and other infrastructure, especially in the rural-urban interface (e.g. Swinley Forest, April/May 2011). Response costs alone for vegetation fires in Great Britain have been estimated at £55 million per year, with individual large scale events costing up to £1 million. In response to significant fire seasons (e.g. 2003 & 2011), 'severe wildfire' has been included on the National Risk Register and two cross-sector national Wildfire Forums have been established (England and Wales; Scotland (with Northern Ireland)). These initiatives evidence the need for appropriate fundamental scientific understanding and systems to manage and mitigate the current and future UK wildfire threat. The recent Climate Change Risk Assessment has also highlighted the increased risk of wildfires. Fire danger is a description of the combination of both constant and variable factors that affect the initiation, spread, and ease of controlling a wildfire on an area. Wildfire Danger Rating Systems (WFDRS) are designed to assess the fuel and weather to provide estimates of flammability and likely fire behaviour under those conditions. These danger ratings can inform management decisions for land managers, direct resourcing plans for FRS teams, and feed into strategic planning for local and national governments. The UK does not have a WFDRS and we lack the fundamental scientific and end-user understanding to effectively predict the likelihood, behaviour and impact of wildfire incidents in the UK for present and future climate and land use scenarios. England and Wales has the Met Office Fire Severity Index system (MOFSI) operated by the Met Office based on weather forecasts only and this is solely designed to determine if open access land should be closed as defined in the Countryside and Rights of Way Act (2000) during 'exceptional' fire weather. However, during the 2018 UK drought MOFSI indices did not rise sufficiently to trigger land closures in areas that suffered severe wildfires. Additionally, due to the absence of a WFDRS in the UK, the algorithms underlying MOFSI are also used to inform the Natural Hazard Partnership Daily Hazard Assessment. The insensitivity to recent extreme fire conditions of 2018 are indicative of its inability to properly forewarn government, responders and land owners. We therefore need a bespoke WFDRS for the UK. This project will undertake the fundamental science and analyses required for building a UK-specific WFDRS, informed by key stakeholders who will act as project partners. This must be designed for UK fuels, its complex land cover mosaics and infrastructure, and changing land use patterns and climate.

  • Funder: UKRI Project Code: EP/T023112/1
    Funder Contribution: 1,445,830 GBP
    Partners: University of Edinburgh, Scottish Power Energy Networks Holdings Limited, Drilcorp, Ristol Consulting, Town Rock Energy Ltd, NRCan, Star Refrigeration Ltd, Natural Power, Scottish and Southern Energy SSE plc, WSP Group plc...

    This project evaluates the potential of Seasonal Thermal Energy Storage (STES) systems to facilitate the decarbonisation of heating and cooling while at the same time providing flexibility services for the future net-zero energy system. The Committee on Climate Change's recent report highlighted that a complete decarbonisation of the building, industry and electricity sectors is required to reach net-zero. Current estimates are that 44% of the total energy demand in the UK is due to heat demand which has large seasonal variations (about 6 times higher in winter compared to summer) and high morning peak ramp-up rates (increase in heat demand is 10 times faster than the increase in electricity demand). Currently, around 80% of the heat is supplied through the natural gas grid which provides the flexibility and capacity to handle the large and fast variations but causes large greenhouse gas emissions. While cooling demand is currently very small in the UK, it is expected to increase significantly: National Grid estimates an increase of up to 100% of summer peak electricity demand due to air conditioning by 2050. In countries such as Denmark, district energy systems with Seasonal Thermal Energy Storage (STES) are already proving to be affordable and more sustainable alternatives to fossil fuel-based heating that are able to handle the high ramp-up rates and seasonal variations. However, the existing systems are usually designed and operated independently from the wider energy system (electricity, cooling, industry and transport sectors), while it has been shown that the best solution (in terms of emissions reduction and cost) can only be found if all energy sectors are combined and coordinated. In particular, large STES systems which are around 100 times cheaper per installed kWh compared to both electricity and small scale domestic thermal storage, can unlock synergies between heating and cooling demand on one side, and industrial, geothermal and waste heat, and variable renewable electricity generation on the other side. However, the existing systems cannot be directly translated to the UK due to different subsurface characteristics and different wider energy system contexts. In addition, the multi-sector integration is still an open challenge due to the complex and nonlinear interactions between the different sectors. This project will develop a holistic and integrated design of district energy systems with STES by considering the interplay and coordination between energy supply and demand, seasonal thermal storage characteristics, and regulation and market frameworks. The results and models from the individual areas will be combined in a whole system model for the design and operation of smart district energy systems with STES. The whole system model will be used to develop representative case studies and guidelines for urban, suburban and campus thermal energy systems based around the smart integration of STES systems. The results will enable the development and deployment of low carbon heating and cooling systems that provide affordable, flexible and reliable thermal energy for the customers while also improving the utilisation of the grid infrastructure and the integration of renewable generation assets and other heat sources.