
Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction Engineering
Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction Engineering
5 Projects, page 1 of 1
assignment_turned_in Project2024 - 2024Partners:Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Chemische Technologie, Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction EngineeringRijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Chemische Technologie,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction EngineeringFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 21799The 19th edition of the Netherlands Process technology Symposium (NPS 19) is the leading event to stay informed about the recent achievements in chemical engineering in the Netherlands. NPS 19 will take place in Groningen from October 8th to 9th, 2024. In this proposal, the context, scientific goal, societal impact and national importance of NPS 19 have been elaborated. Details on the financial support from NWO in order to facilitate the organization of NPS 19 is also provided.
more_vert assignment_turned_in Project2017 - 2022Partners:Rijksuniversiteit Groningen, Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction Engineering, Universiteit Twente, Faculty of Engineering Technology (ET), Department of Mechanics of Solids, Surfaces & Systems (MS3), Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Discrete Technology & Production Automation (DTPA), Universiteit Twente +1 partnersRijksuniversiteit Groningen,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction Engineering,Universiteit Twente, Faculty of Engineering Technology (ET), Department of Mechanics of Solids, Surfaces & Systems (MS3),Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Discrete Technology & Production Automation (DTPA),Universiteit Twente,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG)Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 15472High-precision manufacturing pushes the limits of what is possible with conventional manufacturing systems. The development of the new generation of high-precision manufacturing systems relies on detailed understanding of the process disturbances which cause variation in the end-product. This project aims at developing models for control of manufacturing processes which can be used for interpreting small variations in the process due to product-to-product disturbances. Such accurate and mature models can only be developed through integration of knowledge from high-fidelity physics-based models with knowledge obtained from large streams of sensor data. Integration of models and sensor data is key for the development of novel data analytic tools providing crucial causal information to the product-to-product variations which can subsequently be used by our novel data-driven control systems to pre-empt and to remove such variations in real-time.
more_vert assignment_turned_in Project2018 - 2018Partners:Rijksuniversiteit Groningen, Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction EngineeringRijksuniversiteit Groningen,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction EngineeringFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 040.21.006The valorisation of lignocellulosic biomass and its derivatives for the production of fuels, chemicals and materials holds great promises for well addressing the diminishing fossil resources and global climate change. Within this context, furfural and 5-hydroxymethylfurfural (HMF) have been identified as two very promising platform chemicals derived from C5/C6 sugars. An important research direction is envisaged here in the development of active and stable solid acid catalysts, and the development of the corresponding intensified reactors for a quick catalyst performance optimization and mechanism elucidation as well as for an efficient chemical synthesis of furanics. The topic of the proposed research is centered on the synthesis of furfural and HMF from C5/C6 sugars over carbon-based solid acid catalyst in microreactors. The final research goal is to elucidate the catalytic mechanisms and kinetics of carbon-based solid acid catalysts in the biobased synthesis of furfural (from xylose dehydration) and HMF(from glucose and/or fructose dehydration) via a fast and reliable process screening in microreactors, and subsequently to identify the optimized catalyst system and microreactor operation thereof for obtaining a favorable yield of furanics. The proposed research is intended to realize the scientific cooperation with Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences in China, especially in the area of biobased chemical synthesis. The proposed research combines the expertise of the Chinese group (i.e., Laboratory of Biomass Biochemical Conversion) on the development of carbon-based solid acid catalysts and their uses in biomass conversion, and the expertise of the Dutch group (i.e., Green Chemical Reaction Engineering group at the University of Groningen) on bio-based furanics synthesis and microreactor technology. This cooperation will in enable the generation of innovative research results and promising process technologies, and further allow both groups to establish a long-term partnership in the very near future.
more_vert assignment_turned_in ProjectFrom 2024Partners:Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universiteit Twente, Faculty of Science and Technology (TNW), Chemical Engineering, Photocatalytic Synthesis Group (PCS), Fraunhofer, RWTH Aachen University +8 partnersRijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction Engineering,Friedrich-Alexander-Universität Erlangen-Nürnberg,Universiteit Twente, Faculty of Science and Technology (TNW), Chemical Engineering, Photocatalytic Synthesis Group (PCS),Fraunhofer,RWTH Aachen University,Schaeffler AG,Fraunhofer,Schaeffler AG,Rijksuniversiteit Groningen,Universiteit Twente,Friedrich-Alexander-Universität Erlangen-Nürnberg, Technische Fakultät,RWTH Aachen University,Universiteit TwenteFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: KICH2.V4P.DUI21.003The chemical industry needs to substitute fossil-based energy and resources by renewable energy and sustainable carbon feedstocks such as CO2 and biomass, to reduce environmentally harmful emissions stemming from fossil-derived carbon. To sustain the production of chemicals and materials that propel modern development, this research consortium of academic institutions, technology providers, and technology end-users will develop durable electrodes and electrochemical processes for conversion of carbon dioxide to platform chemicals based on formaldehyde, while simultaneously upgrading bio-acids into bio-chemicals. We will validate the feasibility of electrodes based on earth-abundant carbon, thus eliminating the necessity of critical elements.
more_vert assignment_turned_in Project2020 - 2020Partners:Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction Engineering, Rijksuniversiteit GroningenRijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), ENgineering and TEchnology institute Groningen (ENTEG), Green Chemical Reaction Engineering,Rijksuniversiteit GroningenFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: GOCH.KIEM.KGC01.040De maatschappij raakt zich in toenemende mate bewust dat het huidige lineaire economisch model niet meer houdbaar is. Het gebruik van petrochemische producten resulteert in een toename van CO2 in de atmosfeer. Verder neemt de hoeveelheid afval, met name plastics, verontrustende vormen aan en raken de oceanen zienderogen meer vervuild. Om de bovengenoemde problemen te tackelen is een transitie naar biobased en circulair essentieel. Naast dat we voor het maken van (consumenten) producten meer gebruik moeten maken van natuurlijke, hernieuwbare grondstofstromen zullen we de huidige materialen tevens veel beter moeten recyclen teneinde de druk op het milieu te verminderen. Een belangrijk thema in het recyclen van plastics is de chemische recycling. Een bekend voorbeeld waar op dit moment onderzoek naar verricht wordt is de depolymerisatie van PET naar de monomeren, GEVOLGD DOOR de scheiding van additieven en kleurstoffen en vervolgens weer een polymerisatie tot het gewenste plastic. In dit project wordt een andere methode voor chemische recycling onderzocht, namelijk de katalytische pyrolyse van (mengsels) van plastics tot de aromaten benzeen, tolueen en xylenen (BTX). Deze aromaten zijn veel gebruikte intermediairen voor tal van hoogwaardige plastics, zoals polyesters, polyamides en polyurethanen. Ruwweg 40% van alle huidige plastics is opgebouwd uit BTX. De techniek kan gebruikt worden voor mengsels van plastics en, door toepassing van de ex situ approach kunnen ook sterk vervuilde plastic stromen omgezet worden naar BTX. In samenwerking met het bedrijf BioBTX gaat de Rijksuniversiteit Groningen een kinetische studie doen naar de omzetting van plastics door gebruik te maken van tweetal geselecteerde plastic voedingen en een modelsysteem (etheen, propeen en mengels) voor de omzetting naar BTX middels een katalytische pyrolyse. De resultaten van deze studie zullen gebruikt worden voor een techno-economische evaluatie om te inventariseren of het proces commercieel aantrekkelijk is en geschikt voor verdere opschaling richting pilot/demoplant.
more_vert