
LafargeHolcim
LafargeHolcim
2 Projects, page 1 of 1
assignment_turned_in Project2021 - 2024Partners:Celsa Steel UK, Encirc Ltd, Morgan Advanced Materials, International Synergies Ltd, IoM3 +127 partnersCelsa Steel UK,Encirc Ltd,Morgan Advanced Materials,International Synergies Ltd,IoM3,Norton Aluminium Ltd,Siemens plc (UK),URM (UK) Limited,CLT Carbon Limiting Technologies,AMETEK (UK),Greenology (Teeside) Limited,North East Process Industry ClusterNEPIC,AkzoNobel UK,Cranfield University,NWL,Cast Metals Federation,EnergyNest AS,North East Process Industry ClusterNEPIC,Fives Stein Limited,Jayplas (J&A Young (Leicester) Ltd),Diageo plc,Croda (United Kingdom),British Glass,SIEMENS PLC,Encirc Ltd,Aluminium Federation Ltd,Confederation of Paper Industries,NSG Group (UK),EnergyNest AS,LafargeHolcim,Trent Refractories Ltd,Bunting Magnetics Europe (UK),Sheffield Refractories Ltd,Beatson Clark Limited,NEPIC,Society of Glass Technology,Celsa Steel UK,British Glass,Glass Technology Services Ltd GTS,AMETEK UK,Materials Processing Institute (MPI),British Ceramic Confederation,Almath Crucibles Ltd,Mineral Products Association,CRODA EUROPE LIMITED,IS-Instruments Ltd,F.I.C (UK) Limited,Emerson Advanced Design Center,F.I.C (UK) Limited,Chemical Industries Association Ltd,Industry Wales,CRODA EUROPE LTD,Glass Technology Services Ltd GTS,NSG Holding (Europe) Limited,Saica Paper UK Ltd,Guardian Industries (International),Power Minerals Ltd,Emerson Advanced Design Center,Confederation of Paper Industries,Greenology (Teeside) Limited,British Ceramic Confederation,Kimberly-Clark Limited (UK),Power Minerals Ltd,Saint Gobain Glass Industry,Breedon Cement Ltd,AkzoNobel,Glass Futures Ltd,ANSYS,Heraeus Electro-Nite,Capital Refractories Limited,International Synergies Ltd,NETZSCH (UK),Texon (UK),Zentia (Ceiling Solutions Limited) (UK),Jayplas (J&A Young (Leicester) Ltd),Netzsch Instruments,Texon (UK),Capital Refractories Limited,Breedon Cement Ltd,Diageo plc,Saint Gobain Glass Industry,Imerys,Heraeus Electro-Nite,Glass Futures Ltd,Sheffield Refractories Ltd,Norton Aluminium Ltd,Guardian Industries (International),Modern Built Environment,Liberty House Group (UK),Saica Paper UK Ltd,Beatson Clark Limited,Imerys Minerals Ltd,Hanson Heidelberg Cement Group,Aluminium Federation Ltd,CLT Carbon Limiting Technologies,KNOWLEDGE TRANSFER NETWORK LIMITED,[no title available],Knowledge Transfer Network,Lucideon Ltd,Magnet Applications Ltd,Society of Glass Technology,Morgan Crucible,CRANFIELD UNIVERSITY,Cast Metals Federation,Materials Processing Institute (MPI),IOM3,Industry Wales,Fives Stein Limited,Northumbrian Water Group plc,LafargeHolcim,AkzoNobel UK,Luxfer MEL Technologies,Alpek Polyester UK Ltd,Catal International Ltd,Ansys UK Ltd,Constellium UK Ltd,VESUVIUS UK LTD,Constellium UK Ltd,Kimberly-Clark Limited (UK),URM (UK) Limited,Alpek Polyester UK Ltd,Mineral Products Association,Vesuvius UK,Morgan Advanced Materials plc (UK),IS-Instruments Ltd,Catal International Ltd,British Glass,Almath Crucibles Ltd,Zentia (Ceiling Solutions Limited) (UK),CERAM Research,Chemical Industries Association Ltd,Liberty House Group (UK)Funder: UK Research and Innovation Project Code: EP/V054627/1Funder Contribution: 4,836,820 GBPThe Transforming the Foundation Industries Challenge has set out the background of the six foundation industries; cement, ceramics, chemicals, glass, metals and paper, which produce 28 Mt pa (75% of all materials in our economy) with a value of £52Bn but also create 10% of UK CO2 emissions. These materials industries are the root of all supply chains providing fundamental products into the industrial sector, often in vertically-integrated fashion. They have a number of common factors: they are water, resource and energy-intensive, often needing high temperature processing; they share processes such as grinding, heating and cooling; they produce high-volume, often pernicious waste streams, including heat; and they have low profit margins, making them vulnerable to energy cost changes and to foreign competition. Our Vision is to build a proactive, multidisciplinary research and practice driven Research and Innovation Hub that optimises the flows of all resources within and between the FIs. The Hub will work with communities where the industries are located to assist the UK in achieving its Net Zero 2050 targets, and transform these industries into modern manufactories which are non-polluting, resource efficient and attractive places to be employed. TransFIRe is a consortium of 20 investigators from 12 institutions, 49 companies and 14 NGO and government organisations related to the sectors, with expertise across the FIs as well as energy mapping, life cycle and sustainability, industrial symbiosis, computer science, AI and digital manufacturing, management, social science and technology transfer. TransFIRe will initially focus on three major challenges: 1 Transferring best practice - applying "Gentani": Across the FIs there are many processes that are similar, e.g. comminution, granulation, drying, cooling, heat exchange, materials transportation and handling. Using the philosophy Gentani (minimum resource needed to carry out a process) this research would benchmark and identify best practices considering resource efficiencies (energy, water etc.) and environmental impacts (dust, emissions etc.) across sectors and share information horizontally. 2 Where there's muck there's brass - creating new materials and process opportunities. Key to the transformation of our Foundation Industries will be development of smart, new materials and processes that enable cheaper, lower-energy and lower-carbon products. Through supporting a combination of fundamental research and focused technology development, the Hub will directly address these needs. For example, all sectors have material waste streams that could be used as raw materials for other sectors in the industrial landscape with little or no further processing. There is great potential to add more value by "upcycling" waste by further processes to develop new materials and alternative by-products from innovative processing technologies with less environmental impact. This requires novel industrial symbioses and relationships, sustainable and circular business models and governance arrangements. 3 Working with communities - co-development of new business and social enterprises. Large volumes of warm air and water are produced across the sectors, providing opportunities for low grade energy capture. Collaboratively with communities around FIs, we will identify the potential for co-located initiatives (district heating, market gardening etc.). This research will highlight issues of equality, diversity and inclusiveness, investigating the potential from societal, environmental, technical, business and governance perspectives. Added value to the project comes from the £3.5 M in-kind support of materials and equipment and use of manufacturing sites for real-life testing as well as a number of linked and aligned PhDs/EngDs from HEIs and partners This in-kind support will offer even greater return on investment and strongly embed the findings and operationalise them within the sector.
more_vert assignment_turned_in Project2021 - 2025Partners:The Chartered Institute of Building, Office for National Statistics, UK Coll for Res in Infra & Cities UKCRIC, BURO HAPPOLD LIMITED, Granta Design Ltd +102 partnersThe Chartered Institute of Building,Office for National Statistics,UK Coll for Res in Infra & Cities UKCRIC,BURO HAPPOLD LIMITED,Granta Design Ltd,Expedition Engineering Ltd,Shire Mineral & Machinery Suppliers,Hunan Women'S University,Mineral Products Association,LafargeHolcim,Ove Arup & Partners Ltd,Mace,UK Quality Ash Association (UK QAA),Construction Products Association,Yale University,Granta Design (United Kingdom),UNIVERSITY OF CAMBRIDGE,Great Ormond Street Hospital Children's Charity,TU Wien,Buro Happold,Network Rail,Arup Group,CIRIA,National Highways,Cambridge Integrated Knowledge Centre,LafargeHolcim (United Kingdom),Great Ormond Street Hospital,AECOM,DB Group,Bywaters,Mace,UKQAA,CL:AIRE,University of Otago,High Speed Two HS2 Ltd,ONS,DEFRA,Department for Transport,Specwall-Alliance Ltd,Hoskins Circular,Building Research Establishment (BRE),CIRIA,Askew Soil & Land Ltd,UK QUALITY ASH ASSOCIATION,Brick Development Association,Story Contracting Ltd,University of Cambridge,Shire Mineral & Machinery Suppliers,BSI,University of Otago,OFFICE FOR NATIONAL STATISTICS,Yale University,Askew Soil & Land Ltd,Northumberland County Council,British Glass,University of Surrey,Cambridge CSIC,Costain Ltd,British Glass,CIH,University Federico II of Naples,FORTIS IBA,Mineral Products Association,ENVIRONMENT AGENCY,GCP Applied Technologies,LafargeHolcim,CL:AIRE,UCL,SJTU,TUW,COSTAIN LTD,Northumberland County Council,High Speed Two HS2 Limited,University of Surrey,Specwall-Alliance Ltd,Buro Happold Limited,Construction Products Association,Arup Group Ltd,Highways Agency,Brunel University London,Etex Building Performance Limited,Aggregate Industries,EA,Brunel University,Environment Agency,Brick Development Association,Story Contracting Ltd,Etex Building Performance Limited,NFDC (Nat Fed Demolition Contractors),Vienne University of Technology,AECOM,HLM Architects,LafargeHolcim Group (UK) (Aggregate Ind),GCP Applied Technologies,British Standards Institution BSI,540 World LLP,540 World LLP,Expedition (United Kingdom),British Glass,Bywaters,DB Group,BRE Group (Building Res Establishment),Cambridge CSIC,Network Rail Ltd,HKPU,Hunan University,Hoskins CircularFunder: UK Research and Innovation Project Code: EP/V011820/1Funder Contribution: 4,430,350 GBP177 million tonnes of virgin aggregates, 15 million tonnes of cement and 2 billion bricks were used to build houses, civic and commercial buildings, roads and railways, etc, in the UK in 2016. Meanwhile, 64 million tonnes of waste arose from construction and demolition. Materials from construction and demolition are mainly managed by down-cycling with loss of the value imparted to them by energy-intensive and polluting manufacturing processes; for example, high value concrete is broken down into low value aggregate. Environmental damage is associated with the whole linear life cycles of mineral-based construction materials, and includes scarring of the landscape and habitat destruction when minerals are extracted from the earth; depletion of mineral and energy resources; and water use and emission of greenhouse gases and other pollutants to air, land and water, during extraction, processing, use and demolition. It is important to take action now, to return materials to the resource loop in a Circular Economy, and reduce the amount of extraction from the earth, as the amount we build increases each year. For example, the UK plans spend £600 billion to build infrastructure in the next decade. The UKRI National Interdisciplinary Circular Economy Research Centre for Mineral-based Construction Materials therefore aims to do more with less mineral-based construction materials, to reduce costs to industry, reduce waste and pollution, and benefit the natural environment that we depend on. There is potential for mineral-based construction materials to be reused and recycled at higher value, for example, by refurbishing rather than demolishing, or by building using reusable modules that can be taken apart rather than demolished, so all the energy that went into making them isn't wasted. It may also be possible to substitute minerals from natural sources by other types of mineral wastes, such as the 76 million tonnes of waste arising from excavation and quarrying, 14 million tonnes of mineral wastes that come from other industries, or 4 billion tonnes of historical mining wastes. We can also be more frugal in our use of mineral-based construction materials, by designing materials, products and structures to use less primary raw materials, last longer, and be suitable for repurposing rather than demolition, and using new manufacturing techniques. First, our research will try to better understand how mineral-based construction materials flow through the economy, over all the stages of their life cycle, including extraction, processing, manufacture, and end-of-life. The Centre will work to support the National Materials Database planned by the Office of National Statistics, which will capture how, where and when materials are used and waste arises, so that we have the information to improve this system. We will also study how any changes we might make to practices around minerals use would affect the environment and the economy, such as greenhouse gas emissions, costs to businesses, or jobs. Second, we will work on technical improvements that we can make in design of mineral-based products and structures, and in all the life-cycle stages of mineral-based construction materials. Third, we will look at how changes in current business models and practices could support use of less mineral-based construction materials, such as how they might be able to move more quickly to new technologies, or how they might use digital technologies to keep track of materials. We will explore how the government can support these changes, and how we can provide education so that everyone working in this system understands what they need to do. In the first 4 years of our Centre, 15 postdoctoral researchers will gain research experience working in the universities for 2y and will then work with an industrial collaborator for a year, to implement the results of their research. More than 20 PhD and 30 MSc students will also be trained in the Centre.
more_vert