
WSP Group plc UK
WSP Group plc UK
18 Projects, page 1 of 4
assignment_turned_in Project2017 - 2021Partners:Gaia-Wind, Aurecon, NEPAD, WSP Civils, Zutari +9 partnersGaia-Wind,Aurecon,NEPAD,WSP Civils,Zutari,Ministry of Electricity Sudan,WSP Group plc UK,Ministry of Electricity Sudan,WSP Group plc,NEPAD,Jones & Wagener,Durham University,Jones & Wagener,Durham UniversityFunder: UK Research and Innovation Project Code: EP/P029434/1Funder Contribution: 1,270,180 GBPAfrica is facing the challenge of generating more power to meet existing and future demand. Currently, about one-half Africa's total population is lacking access to electricity. However, the continent is well endowed with renewable energy resources; it is estimated that about 35% of the world resources for wind energy are located in the continent. There are many challenges which hinder the development of infrastructure for wind energy in Africa. Designing suitable foundations to sustain the loads typically applied by wind turbines represents a particular challenge. Most potential locations for wind turbines in Africa are in tropical zones where fluctuation in ground water level is severe. The cycling of water levels means that many deposits of interest are unsaturated for at least part of the year. Unsaturated soils exhibit complex mechanical behaviour, coupled to changes in water content. This research aims to provide design for the foundations of wind turbines in unsaturated soils.
more_vert assignment_turned_in Project2021 - 2024Partners:Land and Water Services Ltd, Boskalis, CARDIFF UNIVERSITY, Jacobs Engineering UK Ltd., Jacobs UK Limited +35 partnersLand and Water Services Ltd,Boskalis,CARDIFF UNIVERSITY,Jacobs Engineering UK Ltd.,Jacobs UK Limited,Chartered Institution of Wastes Mgt,Cardiff Harbour Authority,LC Energy,Cardiff Harbour Authority,Arup Group Ltd,Canal and River Trust,Dauson Environmental Group Limited,Cardiff University,Countryside Council for Wales,Forestry England,WSP Group plc,Forestry England,Ramboll UK,Chartered Institution of Wastes Mgt,Cardiff University,WSP Civils,SUEZ RECYCLING AND RECOVERY UK LTD,Mott Macdonald UK Ltd,Boskalis,Mott Macdonald (United Kingdom),Arup Group,Canal and River Trust,Ove Arup & Partners Ltd,RAM,Welsh Government,Vertase Fli,Vertase Fli,WELSH GOVERNMENT,Land and Water Services Ltd,WSP Group plc UK,Dauson Environmental Group Limited,Natural Resources Wales,Welsh Government,Natural Resources Wales,LC EnergyFunder: UK Research and Innovation Project Code: EP/T03100X/1Funder Contribution: 592,345 GBPThe UK faces serious strategic challenges with the future supply of aggregates, critical minerals and elements. At the same time, the UK must sustainably manage multimillion tonne annual arisings of industrial, mining and mineral wastes (IMMWs). The amount of these wastes generated is projected to increase over the coming years, particularly (i) ash from the combustion of biomass and municipal solid waste, and (ii) contaminated dredgings. These wastes will continue to be landfilled despite often containing valuable resources such as high concentrations of critical metals, soil macronutrients and useful mineral components, some of which actively drawdown atmospheric CO2. The fundamental aim of the ASPIRE (Accelerated Supergene Processes In Repository Engineering) research project is to develop a sustainable method by which ashes, contaminated dredgings and other IMMWs can be stripped of any valuable elements. These stripped elements would then be concentrated in an ore zone for later retrieval and the cleaned residues also returned to use, for example as aggregates, cement additives, or agricultural amendments (including those for carbon sequestration through enhanced mineral weathering). It is a very challenging problem to devise a truly sustainable method to achieve this is an economically viable way, and almost all processes suggested so far in the literature for leaching wastes are themselves carbon and chemical intensive and thus non-sustainable. We are proposing research that comprises the first steps in developing the "ASPIRE waste repository" concept with accelerated analogues of ore-forming "supergene" processes engineered in, such that the dormant waste undergoes processes to (i) concentrate valuable components (e.g. critical metals, phosphate) as an anthropogenic ore to facilitate their future recovery, and (ii) concurrently decontaminate residual mineral material so as to make it available as a bank of material to drawdown for "soft" uses in agriculture, silviculture, greenspace, landscaping in new developments, habitat creation and/or as a cement/concrete additive or replacement aggregate. The processes investigated rely on rainwater passing through a vegetated surface layer which releases naturally occurring compounds from the plant roots and/or other natural organic matter which then pass through and strip valuable elements from the IMMW. The mobilised elements will then pass into a capture zone where they will be stripped from solution and concentrated to form an artificial ore. The research project will seek to engineer the internal processes of the temporary storage waste repository to optimise this. At the same time the upper vegetated surface of the waste repository will serve as greenspace with commensurate ecological and amenity value for local populations. Among the key research challenges is in how to engineer the internal ASPIRE waste repository processes which rely on complex biogeochemical interactions and flow behaviour. Another critical research challenge is to develop an understanding of stakeholder and wider acceptability of this concept which does not fit with current legislation on waste management. With this project we seek to provide a circular technology solution for how we can sustainably manage the future multimillion tonne arisings of IMMW at a critical time as the UK government develops strategies and supporting regulation for the transition to a circular economy.
more_vert assignment_turned_in Project2019 - 2027Partners:Environmental Monitoring Solutions Ltd, Wetsus, Stantec, Morrison Utility Services, Anglian Water +57 partnersEnvironmental Monitoring Solutions Ltd,Wetsus,Stantec,Morrison Utility Services,Anglian Water,WSP Civils,SEVERN TRENT WATER LIMITED,Scottish Water,NEWCASTLE CITY COUNCIL,University of Oxford,City of Bradford Metropolitan Dist Counc,Yorkshire Water Services Ltd,Welsh Water (Dwr Cymru),United Utilities Water PLC,Queen's University,Newcastle City Council,Network Rail,WSP Group plc UK,Atkins (United Kingdom),Thames Water (United Kingdom),Anglian Water,UK Water Partnership,Morrison Utility Services,EMS Environmental Monitoring Solutions,Typhon Treatment Systems Ltd,Queen's University Canada,Atkins Ltd,[no title available],Datatecnics,Datatecnics,Newcastle City Council,UK Water Partnership,Typhon Treatment Systems Ltd,NWL,Network Rail Ltd,UKWIR,Anglian Water Services Limited,Dalhousie University,Cranfield University,Bradford Council,UK Coll for Res in Infra & Cities UKCRIC,Atkins Ltd,Thames Water Utilities Limited,J Murphy & Sons Limited,WSP Group plc,UK Water Industry Research Ltd (UKWIR),Dwr Cymru Welsh Water (United Kingdom),Stantec UK Ltd,J Murphy & Sons Limited,CRANFIELD UNIVERSITY,Wetsus,Kelda Group (United Kingdom),Hydro International Plc,SEVERN TRENT WATER,DCWW,EMS Environmental Monitoring Solutions,United Utilities (United Kingdom),Northumbrian Water Group plc,United Utilities,Hydro International Plc,SW,Yorkshire WaterFunder: UK Research and Innovation Project Code: EP/S023666/1Funder Contribution: 6,921,100 GBPGlobally, one in four cities is facing water stress, and the projected demand for water in 2050 is set to increase by 55%. These are significant and difficult problems to overcome, however this also provides huge opportunity for us to reconsider how our water systems are built, operated and governed. Placing an inspirational student experience at the centre of our delivery model, the Water Resilience for Infrastructure and Cities (WRIC) Centre for Doctoral Training (CDT) will nurture a new generation of research leaders to provide the multi-disciplinary, disruptive thinking to enhance the resilience of new and existing water infrastructure. In this context the WRIC CDT will seek to improve the resilience of water infrastructure which conveys and treats water and wastewater as well as the impacts of water on other infrastructure systems which provide vital public services in urban environments. The need for the CDT is simple: Water infrastructure is fundamental to our society and economy in providing benefit from water as a vital resource and in managing risks from water hazards, such as wastewater, floods, droughts, and environmental pollution. Recent water infrastructure failures caused by climate change have provided strong reminders of our need to manage these assets against the forces of nature. The need for resilient water systems has never been greater and more recognised in the context of our industrial infrastructure networks and facilities for water supply, wastewater treatment and urban drainage. Similarly, safeguarding critical infrastructure in key sectors such as transport, energy and waste from the impacts of water has never been more important. Combined, resilience in these systems is vitally important for public health and safety. Industry, regulators and government all recognise the huge skills gap. Therefore there is an imperative need for highly skilled graduates who can transcend disciplines and deliver innovative solutions to contemporary water infrastructure challenges. Centred around unique and world leading water infrastructure facilities, and building on an internationally renowned research consortium (Cranfield University, The University of Sheffield and Newcastle University), this CDT will produce scientists and engineers to deliver the innovative and disruptive thinking for a resilient water infrastructure future. This will be achieved through delivery of an inspirational and relevant and end user-led training programme for researchers. The CDT will be delivered in cohorts, with deeply embedded horizontal and vertical training and integration within, and between, cohorts to provide a common learning and skills development environment. Enhanced training will be spread across the consortium, using integrated delivery, bespoke training and giving students a set of unique experiences and skills. Our partners are drawn from a range of leading sector and professional organisations and have been selected to provide targeted contributions and added value to the CDT. Together we have worked with our project partners to co-create the strategic vision for WRIC, particularly with respect to the training needs and challenges to be addressed for development of resilience engineers. Their commitment is evidenced by significant financial backing with direct (>£2.4million) and indirect (>£1.6million) monetary contributions, agreement to sit on advisory boards, access to facilities and data, and contributions on our taught programme.
more_vert assignment_turned_in Project2022 - 2026Partners:Zaha Hadid Architects, EDF Energy (United Kingdom), GRIMSHAW, WSP Civils, SIR Norman Foster & Partners +42 partnersZaha Hadid Architects,EDF Energy (United Kingdom),GRIMSHAW,WSP Civils,SIR Norman Foster & Partners,AECOM,AECOM Limited (UK),EDF Energy Plc (UK),Autodesk Inc,Rolls-Royce Plc (UK),MX3D,WSP Group plc UK,Severfield-Reeve Properties Ltd,GRIMSHAW,Mace Group Ltd,WSP Group plc,Rolls-Royce (United Kingdom),Vicon,Balfour Beatty (United Kingdom),Rolls-Royce (United Kingdom),Vicon,Buro Happold,Eckersley O'Callaghan Ltd,MX3D,Ove Arup & Partners Ltd,British Energy Generation Ltd,BALFOUR BEATTY RAIL,Mace Group Ltd,Severfield-Reeve Properties Ltd,Eckersley O'Callaghan Ltd,AKT II,Arup Group,Skidmore, Owings & Merrill LLP,AKT II,Fosters and Partners,Buro Happold Limited,Arup Group Ltd,Glenalmond Group,BALFOUR BEATTY PLC,Glenalmond Group,Autodesk Inc,Skidmore, Owings & Merrill,Imperial College London,UK Aecom,BURO HAPPOLD LIMITED,Mace Ltd,Zaha Hadid ArchitectsFunder: UK Research and Innovation Project Code: EP/X014533/1Funder Contribution: 1,648,010 GBPThe construction sector is strategically important to the UK economy, employing 3.1 million people (>9% of the workforce), producing £370 billion in turnover, and exporting more than £8 billion in products and services. However, its current philosophy is resource and cost inefficient and environmentally unsustainable, through its low productivity, slow technology adoption and tendency to demolish and rebuild. Metal 3D printing offers opportunities to solve these challenges and lead to a more productive, innovative and sustainable construction sector. Metal 3D printing technology has transformed other engineering disciplines, including the biomedical and aeronautical sectors, while its application within the construction sector is still in its infancy. The technology has been fundamentally proven through the MX3D Bridge, the first metal 3D printed structure that was opened in July 2021, however there are still a number of barriers preventing more widespread adoption. Current equipment and processes produce elements that have significant material and geometric variability, within the same build and between repeated builds, which is not optimal for real-world use. Furthermore, the limited availability of suitable printing equipment has prevented research into the development of this novel manufacturing technique and its applications to the construction sector. ICWAAM will be a globally unique metal 3D printing facility, dedicated to large-scale, cost-effective applications for the construction sector. It will offer new research capabilities into the printing process, automated manufacture and the repair and upgrade of our critical infrastructure, along with the printing of complex, materially efficient geometries, which are uneconomical or impossible with standard techniques. ICWAAM will fundamentally challenge the current philosophy of the construction industry and lead to its transformation into a more productive, innovative and sustainable sector, with increased worker safety. Without direct access to large-scale metal 3D printing equipment, such as ICWAAM, researchers are unable to undertake this critical research and development, to solve the longstanding challenges in the construction sector.
more_vert assignment_turned_in Project2021 - 2026Partners:WSP Group plc, Born in Bradford Office, Immaterial, Ricardo AEA, WSP Civils +13 partnersWSP Group plc,Born in Bradford Office,Immaterial,Ricardo AEA,WSP Civils,NERC National Ctr for Atmospheric Sci,Ricardo AEA (United Kingdom),Born in Bradford Office,Homelink,University of York,Immaterial,University of York,RB,WSP Group plc UK,NERC National Ctr for Atmospheric Sci,Reckitt Benckiser plc,Tincture london,HomelyncFunder: UK Research and Innovation Project Code: NE/W002256/1Funder Contribution: 1,506,870 GBPIn developed countries such as the UK, we spend 90% of our time indoors with approximately two thirds of this in our homes. Despite this fact, most air pollutant regulation focuses on the outdoor environment. There is increasing evidence that exposure to air pollution causes a range of health effects, but uncertainties on the causal effects of individual pollutants on specific health outcomes still exist partly due to crude exposure metrics. Nearly all studies of health effects to date have used measurements from fixed outdoor air pollution monitoring networks, a procedure that ignores the modification effects of indoor microenvironments where people spend most of their time. There are consequently large uncertainties surrounding human exposure to indoor air pollution, which means we are currently unable to identify the most effective solutions to design, operate and use our homes to minimise our exposure to air pollution within them. In the UK, there are virtually no data to quantify indoor air pollutant emissions, building-to-building variability of these, chemical speciation of indoor pollutants, ingress of outdoor pollution indoors or of indoor generated pollutants outdoors, or the social, economic or lifestyle factors that can lead to elevated pollutant exposures. Without a fundamental understanding of how indoor air pollution is caused, transformed and distributed in UK homes, research aiming to develop behavioural, technical or policy interventions may have little impact, or at worst be counterproductive. For example, energy efficiency measures are broadly designed to make buildings more airtight. However, given that the concentrations of many air pollutants are often higher indoors than outdoors, reducing ventilation rates may increase our exposure to air pollution indoors and to any potentially harmful effects of the resulting pollutant mixture. Further, if interventions are introduced without sufficient consideration of how occupants actually use and behave in a building, they may fail to achieve the desired effect. To understand and improve indoor air quality (IAQ), we must adopt a systems approach that considers both the home and the human. There is a particular paucity of data for the most deprived households in the UK. There is a facile assumption that poorer homes are likely to experience worse IAQ than better off households, although the reality may be considerably more nuanced. Lower quality housing may be leakier than more expensive homes allowing indoor emissions to escape more easily, whilst large, expensive town-houses converted to flats can be badly ventilated following poor retrofitting practices. Differences in cooking practices, smoking rates, internal building materials and the usage of solvent containing products indoors will also be subject to wide variations across populations and hence have differential effects on IAQ and pollutant exposure. In fact, differences in individual behaviour lead to large variations in indoor concentrations of air pollutants even for identical houses, typically driven by the frequency and diversity of personal care product use. The INGENIOUS project will provide a comprehensive understanding of indoor pollution in UK homes, including i) the key sources relevant to the UK ii) the variability between homes in an ethnically diverse urban city, with a focus on deprived areas (using the ongoing Born in Bradford cohort study) iii) the effects of pollutant transformation indoors to generate by-products that may adversely affect health iv) the drivers of behaviours that impact on indoor air pollution (v) recommendations for interventions to improve IAQ that we have co-designed and tested with community members.
more_vert
chevron_left - 1
- 2
- 3
- 4
chevron_right