
HSSMI Ltd
HSSMI Ltd
3 Projects, page 1 of 1
assignment_turned_in Project2017 - 2023Partners:Britvic Soft Drinks, Britvic Soft Drinks Ltd, BAE Systems (United Kingdom), Loughborough University, Loughborough University +14 partnersBritvic Soft Drinks,Britvic Soft Drinks Ltd,BAE Systems (United Kingdom),Loughborough University,Loughborough University,IBM (United Kingdom),IBM (United Kingdom),Rolls-Royce (United Kingdom),Manufacturing Technology Centre (United Kingdom),BAE Systems (Sweden),BAE Systems (UK),MTC,S2S Ltd,HSSMI Ltd,S2S Ltd,IBM UNITED KINGDOM LIMITED,Rolls-Royce (United Kingdom),Rolls-Royce Plc (UK),HSSMI LtdFunder: UK Research and Innovation Project Code: EP/P027482/1Funder Contribution: 1,608,260 GBPThis proposal seeks to provide a platform for strategic research and impact activities within the embedded integrated intelligent systems (EIIS) domain. This research area covers all aspects of designing and developing products and processes that can demonstrate adaptation and learning (i.e. in terms of self - organising, adapting, configuring, optimising, protecting and healing), at the system or service level based upon intelligent sensing and actuation at the granularity of the individual components. The multidisciplinary nature of the domain is challenging since successful deployment and adoption within the harsh industrial environment requires advancements in several areas (e.g. (1) materials, antennae design, embedded power sources, energy harvesting, real-time software architectures, embedded processing and robust wireless communications protocols at the device level and (2) optimisation, visualisation, analytics, machine learning and digital manufacturing at the systems science and services level). The EIIS group at Loughborough University was founded in 2007 and currently comprises 35 staff (academics (A), post doctoral research associates (PDRA) and postgraduate research students (PhD)). This proposal will enable the team to develop the EIIS strategic research agenda in line with industrial collaborators' (e.g. automotive, electronics, aerospace, sport, healthcare and end of life processing), EPSRC and Government strategies via "ideas factory" colloquia, short-term feasibility studies into "hot topics" and multi-disciplinary responsive-mode submissions to funding bodies (e.g. EPSRC, innovateUK, EU, APC/BIS, Wellcome). The funding will also support the development of a pipeline of expertise in EIIS for UK industry and academia. Undergraduates will be supported via internships in industry or academia to expose the next generation of talent to the EIIS opportunities and challenges and also provide research resource for junior members of the EIIS group. Current EIIS members will also be funded to attend technical, business and innovation courses provided by academia and / or industry and encouraged to take long term (i.e. 3 month) sabbaticals within industry and alternative world leading academic or technology transfer institutions to enable the group to identify best global practices and determine relevant benchmarks for success of the research.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::37a9fdb75edd620deed89d8504999f42&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::37a9fdb75edd620deed89d8504999f42&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2025Partners:Norwegian University of Science and Technology Science and Technology, NTNU (Norwegian Uni of Sci & Technology), Apto Solutions, EYDE Cluster, Oakdene Hollins (United Kingdom) +77 partnersNorwegian University of Science and Technology Science and Technology,NTNU (Norwegian Uni of Sci & Technology),Apto Solutions,EYDE Cluster,Oakdene Hollins (United Kingdom),PV3 Technologies Ltd,Environment Agency,Marine Minerals Ltd,Beta Technology Limited,DEFRA,Geothermal Engineering Ltd,Critical Minerals Association,Roskill Information Services Ltd,Minviro,LCM,Natural History Museum,EYDE Cluster,Levin Sources,EA,Satarla,Ravel,Cornwall Resources Limited,Natural History Museum,Cornish Mining World Heritage,Life Saver Power,CB2tech Limited,ENVIRONMENT AGENCY,Mkango Resources Limited,Apto Solutions,The Coal Authority,Minviro,Ravel,Advanced Propulsion Centre,Satarla,Celsa Steel UK,Pact,Critical Materials Institute,Life Saver Power,Cornish Lithium Ltd,CSM,Critical Materials Institute,Critical Minerals Association,Cornwall Council,Circunomics,Mandalay Resources,Cobalt Institute,Cobalt Institute,UNIVERSITY OF EXETER,HSSMI Ltd,HyProMag,Circunomics,Mkango Resources Limited,Department for International Trade,Bullitt,University of Exeter,Advanced Propulsion Centre UK Ltd (APC),HyProMag,Cobalt Institute,Beta Technology Limited,Levin Sources,CB2tech Limited,HSSMI Ltd,Cornish Lithium Ltd,Norwegian University of Science and Technology,Kite Air Ltd,PV3 Technologies (United Kingdom),Less Common Metals Ltd,Pact,UK Trade and Investment,Cornish Mining World Heritage,Oakdene Hollins (United Kingdom),University of Exeter,Kite Air Ltd,The Coal Authority,Celsa Steel UK,Bullitt,Cornwall Council,Cornwall Resources Limited,Roskill Information Services Ltd,Colorado School of Mines,Marine Minerals Ltd,Geothermal Engineering LtdFunder: UK Research and Innovation Project Code: EP/V011855/1Funder Contribution: 4,436,180 GBPThe Circular Economy (CE) is a revolutionary alternative to a traditional linear, make-use-dispose economy. It is based on the central principle of maintaining continuous flows of resources at their highest value for the longest period and then recovering, cascading and regenerating products and materials at the end of each life cycle. Metals are ideal flows for a circular economy. With careful stewardship and good technology, metals mined from the Earth can be reused indefinitely. Technology metals (techmetals) are an essential, distinct, subset of specialist metals. Although they are used in much smaller quantities than industrial metals such as iron and aluminium, each techmetal has its own specific and special properties that give it essential functions in devices ranging from smart phones, batteries, wind turbines and solar cells to electric vehicles. Techmetals are thus essential enablers of a future circular, low carbon economy and demand for many is increasing rapidly. E.g., to meet the UK's 2050 ambition for offshore wind turbines will require 10 years' worth of global neodymium production. To replace all UK-based vehicles with electric vehicles would require 200% of cobalt and 75% of lithium currently produced globally each year. The UK is 100% reliant on imports of techmetals including from countries that represent geopolitical risks. Some techmetals are therefore called Critical Raw Materials (high economic importance and high risk of supply disruption). Only four of the 27 raw materials considered critical by the EU have an end-of-life recycling input rate higher than 10%. Our UKRI TechMet CE Centre brings together for the first time world-leading researchers to maximise opportunities around the provision of techmetals from primary and secondary sources, and lead materials stewardship, creating a National Techmetals Circular Economy Roadmap to accelerate us towards a circular economy. This will help the UK meet its Industrial Strategy Clean Growth agenda and its ambitious UK 2050 climate change targets with secure and environmentally-acceptable supplies of techmetals. There are many challenges to a future techmetal circular economy. With growing demand, new mining is needed and we must keep the environmental footprint of this primary production as low as possible. Materials stewardship of techmetals is difficult because their fate is often difficult to track. Most arrive in the UK 'hidden' in complex products from which they are difficult to recover. Collection is inefficient, consumers may not feel incentivised to recycle, and policy and legislative initiatives such as Extended Producer Responsibility focus on large volume metals rather than small quantity techmetals. There is a lack of end-to-end visibility and connection between different parts of techmetal value chains. The TechMet consortium brings together the Universities of Exeter, Birmingham, Leicester, Manchester and the British Geological Survey who are already working on how to improve the raw materials cycle, manufacture goods to be re-used and recycled, recycle complex goods such as batteries and use and re-use equipment for as long as possible before it needs recycling. One of our first tasks is to track the current flows of techmetals through the UK economy, which although fundamental, is poorly known. The Centre will conduct new interdisciplinary research on interventions to improve each stage in the cycle and join up the value chain - raw materials can be newly mined and recycled, and manufacturing technology can be linked directly to re-use and recycling. The environmental footprint of our techmetals will be evaluated. Business, regulatory and social experts will recommend how the UK can best put all these stages together to make a new techmetals circular economy and produce a strategy for its implementation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0a78c38cedeaa2abd14c2523d1b236ae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0a78c38cedeaa2abd14c2523d1b236ae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2025Partners:iRob International Ltd., Arrival Ltd, Stewart Milne Group, Cambrian Intelligence, Rolls-Royce (United Kingdom) +99 partnersiRob International Ltd.,Arrival Ltd,Stewart Milne Group,Cambrian Intelligence,Rolls-Royce (United Kingdom),KUKA (United Kingdom),Expert Tooling and Automation Limited,Constellium UK Ltd,myenergi Ltd.,Sunamp (United Kingdom),IntelliDigest,IntelliDigest,Measurements Solutions Ltd.,True Position Robotics Ltd,MAKAR Ltd,Scottish Agricultural Org Society (SAOS),Scorpion Vision Limited,MAKAR Ltd,Teknek Limited,Claromech Limited,Expert Tooling and Automation Limited,BAE Systems (UK),Ultraleap,Chinese Academy of Sciences,University of Patras,Ocado Group,Toyota Motor Manufacturing Ltd,GT,RAR UK Automation Ltd.,BAE Systems (Sweden),myenergi Ltd.,Measurement Solutions Ltd.,AIRBUS OPERATIONS LIMITED,ElectroImpact,Arrival Ltd,MTC,True Position Robotics Ltd.,Cambrian Intelligence,Airbus Operations Limited,Rolls-Royce (United Kingdom),Manufacturing Technology Centre (United Kingdom),Shadow Robot Company Ltd,SP Technology Automation and Robotics,Fanuc Robotics (U K) Ltd,KUKA Robotics UK Limited,Fraunhofer HHI,SUNAMP LIMITED,KTH,CAS,Airbus (United Kingdom),Electroimpact UK Limited (UK),Georgia Institute of Technology,Claromech Limited,Agri-EPI Centre,Fraunhofer Institute for Manufacturing Engineering and Automation,University of Birmingham,Constellium (United Kingdom),Liberty Produce,Ocado Limited,Inovo Robotics,Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute,Fraunhofer IPA,Fraunhofer HHI,Agricultural Engineering Precision Innovation Centre,Norscot Joinery Limited,RAR UK Automation Ltd.,SP Technology Automation and Robotics,Loughborough University,Toyota Motor Manufacturing (UK) Ltd,CRRC (United Kingdom),BAE Systems (United Kingdom),HSSMI Ltd,Spirit AeroSystems (United Kingdom),Nat Inst of Industrial Eng NITIE Mumbai,Loughborough University,CNC Robotics Ltd,GKN Aerospace Services Ltd,Chinese Academy of Sciences,Scottish Agricultural Org Society (SAOS),Norscot Joinery Limited,Stewart Milne Group,HAL Robotics Ltd (UK),Soil Machine Dynamics UK,National Institute of Industrial Engineering,Shadow Robot (United Kingdom),Scorpion Vision Limited,HAL Robotics Ltd (UK),Fanuc Robotics (U K) Ltd,Ultraleap,Be-St,Construction Scotland Innovation Centre,Royal Institute of Technology KTH Sweden,iRob International Ltd.,Inovo Robotics,GKN Aerospace,University of Patras,Nat Inst of Industrial Eng NITIE Mumbai,KUKA Robotics UK Limited,ROLLS-ROYCE PLC,Liberty Produce,Spirit Aerosystems,Teknek Limited,HSSMI Ltd,CNC Robotics LtdFunder: UK Research and Innovation Project Code: EP/V062158/1Funder Contribution: 4,821,580 GBPThe UK has fallen significantly behind other countries when it comes to adopting robotics/automation within factories. Collaborative automation, that works directly with people, offers fantastic opportunities for strengthening UK manufacturing and rebuilding the UK economy. It will enable companies to increase productivity, to be more responsive and resilient when facing external pressures (like the Covid-19 pandemic) to protect jobs and to grow. To enable confident investment in automation, we need to overcome current fundamental barriers. Automation needs to be easier to set up and use, more capable to deal with complex tasks, more flexible in what it can do, and developed to safely and intuitively collaborate in a way that is welcomed by existing workers and wider society. To overcome these barriers, the ISCF Research Centre in Smart, Collaborative Robotics (CESCIR) has worked with industry to identify four priority areas for research: Collaboration, Autonomy, Simplicity, Acceptance. The initial programme will tackle current fundamental challenges in each of these areas and develop testbeds for demonstration of results. Over the course of the programme, CESCIR will also conduct responsive research, rapidly testing new ideas to solve real world manufacturing automation challenges. CESCIR will create a network of academia and industry, connecting stakeholders, identifying challenges/opportunities, reviewing progress and sharing results. Open access models and data will enable wider academia to further explore the latest scientific advances. Within the manufacturing industry, large enterprises will benefit as automation can be brought into traditionally manual production processes. Similarly, better accessibility and agility will allow more Small and Medium sized Enterprises (SMEs) to benefit from automation, improving their competitiveness within the global market.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bfda36612c477cb745a385829feddfa3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bfda36612c477cb745a385829feddfa3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu