Powered by OpenAIRE graph
Found an issue? Give us feedback

AstraZeneca plc

Country: United Kingdom
329 Projects, page 1 of 66
  • Funder: UK Research and Innovation Project Code: EP/M024385/1
    Funder Contribution: 1,184,070 GBP

    Sensors permeate our society, measurement underpins quantitative action and standardized accurate measurements are a foundation of all commerce. The ability to measure parameters and sense phenomena with increasing precision has always led to dramatic advances in science and in technology - for example X-ray imaging, magnetic resonance imaging (MRI), interferometry and the scanning-tunneling microscope. Our rapidly growing understanding of how to engineer and control quantum systems vastly expands the limits of measurement and of sensing, opening up opportunities in radically alternative methods to the current state of the art in sensing. Through the developments proposed in this Fellowship, I aim to deliver sensors enhanced by the harnessing of unique quantum mechanical phenomena and principles inspired by insights into quantum physics to develop a series of prototypes with end-users. I plan to provide alternative approaches to the state of the art, to potentially reduce overall cost and dramatically increase capability, to reach new limits of precision measurement and to develop this technology for commercialization. Light is an excellent probe for sensing and measurement. Unique wavelength dependent absorption, and reemission of photons by atoms enable the properties of matter to be measured and the identification of constituent components. Interferometers provide ultra-sensitive measurement of optical path length changes on the nanometer-scale, translating to physical changes in distance, material expansion or sample density for example. However, for any canonical optical sensor, quantum mechanics predicts a fundamental limit of how much noise in such experiment can be suppressed - this is the so-called shot noise and is routinely observed as a noise floor when using a laser, the canonical "clean" source of radiation. By harnessing the quantum properties of light, it is possible reach precision beyond shot noise, enabling a new paradigm of precision sensors to be realized. Such quantum-enhanced sensors can use less light in the optical probe to gain the same level of precision in a conventional optical sensor. This enables, for example: the reduction of detrimental absorption in biological samples that can alter sample properties or damage it; the resolution of weak signals in trace gas detection; reduction of photon pressure in interferometry that can alter the measurement outcome; increase in precision when a limit of optical laser input is reached. Quantum-enhanced techniques are being used by the Laser Interferometer Gravitational Wave Observatory (LIGO) scientific collaboration to reach sub-shot noise precision interferometry of gravitational wave detection in kilometer-scale Michelson interferometers (GEO600). However, there is otherwise a distinct lack of practical devices that prove the potential of quantum-enhanced sensing as a disruptive technology for healthcare, precision manufacture, national security and commerce. For quantum-enhanced sensors to become small-scale, portable and therefore practical for an increased range of applications outside of the specialized quantum optics laboratory, it is clear that there is an urgent need to engineer an integrated optics platform, tailored to the needs of quantum-enhanced sensing. Requirements include robustness, miniaturization inherent phase stability and greater efficiency. Lithographic fabrication of much of the platform offers repeatable and affordable manufacture. My Fellowship proposal aims to bring together revolutionary quantum-enhanced sensing capabilities and photonic chip scale architectures. This will enable capabilities beyond the limits of classical physics for: absorbance spectroscopy, lab-on-chip interferometry and process tomography (revealing an unknown quantum process with fewer measurements and fewer probe photons).

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/H530689/1
    Funder Contribution: 73,110 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L023121/1
    Funder Contribution: 980,230 GBP

    Chemistry is a dynamic subject that is at the centre of many different scientific advances. Organic chemistry is concerned with the reactivity of carbon in all its different forms and can be viewed as the chemistry taking place within living things. Chemists are constantly looking for new ways of designing and building molecules (synthetic chemistry is molecular architecture) and this proposal describes a short and powerful new way of making valuable molecules using a new type of catalyst. The molecules at the heart of the proposal are compounds containing a carbon-oxygen double bond (a carbonyl group) which have special properties and are the building blocks of many known pharmaceutical agents. The novel chemistry proposed here will provide a new, efficient and powerful way of making carbonyl compounds using catalysis to control all aspects of the structures of the products formed: this will be of great benefit to both academia and industry who will be able to make interesting molecules (some that were otherwise inaccessible) in new ways. Plans have also been made to screen the compounds that we make for a wide range of biological activity. Given all of the above, it is imperative that we have novel, efficient and powerful methods for making new carbonyl containing compounds so that we can study and use them. In addition, the development and application of new catalysts and catalytic systems is also important because catalysis makes chemical reactions run faster, and become cleaner with less waste: this is clearly a good thing for industry and also for the environment. The Fellowship aspect of this proposal is designed to allow the principal investigator the time to study and develop a new research direction. Plans have been made to interact and collaborate with other academics who can provide specialist knowlege and also with two project partners (one a multi-national pharmaceutical company and the other a leading academic in the United States of America) so that industrial problems and mechanistic details can be identified and addressed at all stages of the project. Three post-doctoral assistants will be employed to carry out the exprimental work, and the project will provide a thorough and comprehensive training in science and the attendant areas of communication/ presentation and creativity. This will equip them very well for the job market afterwards.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E036244/1
    Funder Contribution: 2,657,690 GBP

    This application aims to catalyse and sustain a new dimension in UK research capability in physical organic chemistry. Our strategic alliance in physical organic chemistry will provide a unique continuum of expertise to tackle research opportunities in areas as diverse as materials chemistry, synthesis methodologies and pharmaceutical discovery and development. It will have the capability to address issues from solid-state to solution and gas-phase, from small molecules to biopolymers, and from nanoscale to pilot plant. We focus on topics of international significance to industry worldwide as well as to academic chemistry, that will help to (i) drive the creation of 21st-century electronic materials, devices and technologies (ii) understand and exploit methodologies for assisting chemical reactions with the potential to revolutionise energy use in chemicals and pharmaceuticals industries (iii) provide new and more effective medicines through understanding molecular recognition in pharmaceutical systems including drug-receptor, drug-drug and drug-carrier complexes. Its importance is underlined by the initial substantial support from diverse sectors of the chemicals and pharmaceuticals industry that we have so far put in place. It will initially lead to 26 new appointments, and we look forward to even more dynamic growth as the program unfolds.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/E527671/1
    Funder Contribution: 70,820 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.