Powered by OpenAIRE graph
Found an issue? Give us feedback

CIRIA

Country: United Kingdom
23 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/F007426/1
    Funder Contribution: 3,148,360 GBP

    The first phase of the SUE Programme has focused necessarily on the present, assessing current solutions and their application in the near future, thus providing a strong empirical base on which to build. There now exist both the need and a sufficient body of work to extrapolate the findings to establish and test alternative urban futures: to create a variety of scenarios, building on prior and new work, and predicated on different fundamental assumptions and priorities; to assess those scenarios in terms of design, engineering implementation and measurement of performance; to refine them, in terms of mitigation and adaptation measures, incorporating novel solutions; and ultimately to provide alternative solutions with an associated evidence base and strategies for their implementation. This bid seeks to integrate the outputs of three current SUE consortia (Birmingham Eastside, VivaCity 2020 and WaND) and complementary research on the use of trees to mitigate the effects of atmospheric pollution. The team will work across disciplines to envision and establish alternative futures (using extensive literature on this subject and prior WaND consortium work) and construct scenarios that might flow from each alternative future. The various work packages will then focus on testing specific dimensions of each alternative future vis a vis their design, implementation and performance in the context of case history sites. Each project will engage an expert panel of influential stakeholders who will meet six-monthly to test and help shape new ideas, the chairs of each of the expert panels forming the higher level project steering committee. Panel consultation will be followed by interviews of stakeholders on motivations and the decision-making process, and specific empirical research and modelling. The following high level questions will be addressed via this process: - How does the ab initio conceptualization of sustainability influence design outcomes (e.g. form, density)? How would outcomes change if urban renewal were predicated on either environmental or social or economic overriding drivers? - How does development impact on its environs, and vice versa (e.g. is a 'sustainable' site good for the city / region / country and, if so, in what ways?) and is there an optimum development size to yield optimally sustainable outcomes? - Push versus pull to achieve sustainable outcomes. Much of what is done is thought good (for individuals, society, the environment), what might be wanted (push). Thus decisions are made and people must decide whether or not to take ownership. Might more sustainable outcomes follow if those who must take ownership dictate what is created (pull)? Birmingham Eastside will be used both to develop sustainability ideas and to test them on sites at various stages of planning and development (the research team has unparalleled access via its partnerships with key stakeholders involved in Eastside). Lancaster (with Morecambe, population 96k) and Worcester (94k) will be used to test the outcomes at the scale of smaller urban areas (e.g. market towns) but no attempt will be made to build comprehensive databases as at Eastside. Several other UK and international urban areas (including Sao Paulo, Singapore and an urban area in India) will be used to test a sub-set of the project's findings to assess the transferability of the scenarios to a variety of contexts and thus their general applicability.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N021614/1
    Funder Contribution: 3,163,720 GBP

    Globally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G000395/1
    Funder Contribution: 2,094,700 GBP

    Our vision is to engage users in the design of control systems they like, that allow them to create the comfort conditions they want, and which through using the technology and fabric of their homes more effectively, reduces their energy use by 20%. We want to design and test these control systems in a way that complies with utilities' CERT-2 obligations, and provide design, installation and maintenance guidance which allows others to learn from our work and apply it more widely. We estimate this has the potential to save around 3 MT CO2 annually.Homes use about a third of the UK's energy, and produce about a third of all CO2 emissions. Because of the low rates of demolition, and the difference in efficiency between new and old houses, even if every house built from now to 2050 was zero-carbon, the total emissions from the UK housing stock would stay roughly the same. Any significant reductions must come from existing homes. In existing homes, making them comfortable (primarily through heating) uses around two thirds of their energy and carbon. We also know that how occupants' make their home comfortable, through use of the heating system, doors, windows, lighting, the clothes they wear, etc, has an enormous effect on energy use. Identical homes, with different occupants, can vary in energy use by a factor of two to three. Driving your home well can reduce your carbon footprint much more than installing wind turbines or solar panels. Currently, driving your home well is very hard to do. There's almost no feedback on the effect of leaving the bedroom window open at night, or having your thermostat at 21 C rather than 19 C. A quarterly energy bill provides almost no help so occupants' are currently 'driving blind' when it comes to saving energy or reducing their carbon footprint. This project aims to give them something to see with / forms of feedback on the energy costs of their actions which are immediate and in a form they themselves want. We will work with occupants, in their own homes, to understand what they would find useful. Using an action research approach and user centred design methods, we will understand their day to day comfort practices (i.e. how they drive their home) and design systems to help them drive it better, better in terms of comfort, spending less on energy and reducing their carbon footprint. Previous studies show that relatively simple forms of feedback, such as an LCD display showing instantaneous energy use, can help people save 5 to 15%. While these displays are good, they usually only display the total electricity used in the home, not on individual appliances, and they only provide information. In order for people to make changes they need three things: feedback (information on energy use); motivation (the desire to reduce energy use) and choice (the ability to act differently). There is scope to design technologies that provide all three of these - to provide occupants with systems for control that tell them what is using energy, what choices they have to use less, and do to so in a way they like to engage with. An approach targeting all three of these issues, and engaging users throughout the design process, has not been tried before but given previous studies, savings of 20% could reasonably be expected. The research is highly interdisciplinary and is based in field work involving lots of monitoring to ensure the technologies work and deliver real, measurable savings. The research team is a balance of technologists and social researchers and through working closely with householders, utilities and housing providers, we feel we can make a real contribution to understanding how people use energy to make their homes comfortable, and to develop control systems that can help them do this more effectively while saving on energy costs and reducing their carbon footprint.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E002323/1
    Funder Contribution: 17,848,800 GBP

    The Innovative Manufacturing and Construction Research Centre (IMCRC) will undertake a wide variety of work in the Manufacturing, Construction and product design areas. The work will be contained within 5 programmes:1. Transforming Organisations / Providing individuals, organisations, sectors and regions with the dynamic and innovative capability to thrive in a complex and uncertain future2. High Value Assets / Delivering tools, techniques and designs to maximise the through-life value of high capital cost, long life physical assets3. Healthy & Secure Future / Meeting the growing need for products & environments that promote health, safety and security4. Next Generation Technologies / The future materials, processes, production and information systems to deliver products to the customer5. Customised Products / The design and optimisation techniques to deliver customer specific products.Academics within the Loughborough IMCRC have an internationally leading track record in these areas and a history of strong collaborations to gear IMCRC capabilities with the complementary strengths of external groups.Innovative activities are increasingly distributed across the value chain. The impressive scope of the IMCRC helps us mirror this industrial reality, and enhances knowledge transfer. This advantage of the size and diversity of activities within the IMCRC compared with other smaller UK centres gives the Loughborough IMCRC a leading role in this technology and value chain integration area. Loughborough IMCRC as by far the biggest IMRC (in terms of number of academics, researchers and in funding) can take a more holistic approach and has the skills to generate, identify and integrate expertise from elsewhere as required. Therefore, a large proportion of the Centre funding (approximately 50%) will be allocated to Integration projects or Grand Challenges that cover a spectrum of expertise.The Centre covers a wide range of activities from Concept to Creation.The activities of the Centre will take place in collaboration with the world's best researchers in the UK and abroad. The academics within the Centre will be organised into 3 Research Units so that they can be co-ordinated effectively and can cooperate on Programmes.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F013299/1
    Funder Contribution: 30,855 GBP

    The focus of this collaboration is to link research groups who undertake full-scale monitoring of slopes through a range of people-based activities. These include: visits of UK researchers and academics to a number of field sites both in the UK and overseas; exchanges of young researchers between UK and overseas academic institutions; secondments of researchers to industry; a dissemination workshop and the establishment of a web portal for the storage and exchange of data and for the running of on-line meetings and seminars. Despite its main focus, the collaboration will necessarily provide links between members of the extended research teams with expertise in numerical simulation, constitutive modelling, soils testing and instrumentation. It is the intention that these activities will also be linked within the wider collaborative framework created by this funding.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.