Powered by OpenAIRE graph
Found an issue? Give us feedback

E.ON New Build and Technology Ltd

Country: United Kingdom

E.ON New Build and Technology Ltd

30 Projects, page 1 of 6
  • Funder: UK Research and Innovation Project Code: EP/L026686/1
    Funder Contribution: 23,281 GBP

    The Climate Change Act 2008 requires a 34% cut in 1990 greenhouse gas emissions by 2020 and at least an 80% reduction in emissions by 2050. Residential and commercial buildings account for 25% and 18% of the UK's total CO2 emissions respectively and therefore have a significant role to play in a national decarbonisation strategy. As the UK has some of the oldest and least efficient buildings in Europe, there is substantial scope for improving the efficiency of energy end-use within UK buildings. However efforts to improve building energy efficiency, specifically the thermal efficiency of the building fabric, have to date focused primarily on the analysis and assessment of single properties. The slow uptake of insulation measures through the Green Deal and Energy Companies Obligation testifies to the difficulty of achieving these changes on a house-by-house basis. If the UK is to achieve its energy and climate policy targets, then a more ambitious whole-city approach to building energy improvements is needed. Technical innovations in remote sensing and infrared thermography mean that it is now possible to conduct building efficiency surveys at a mass scale. The challenge is how such data can be improved (for example moving from 2D plan imagery to 3D models of the built environment) and combined with systems analysis tools to inform effective retrofit strategies. The Urban Scale Building Energy Network will investigate this research challenge by bringing together five academic co-investigators with disciplinary expertise from across the building retrofit value chain from remote autonomous sensing to building physics, energy systems design, consumer behaviour and policy. Working with two experienced mentors from the fields of energy systems and building energy services, the co-investigators will undertake a series of activities in collaboration with project partners from industry and government to better understand the research challenge and develop roadmaps for future research. The activities include: - Two workshops and a series of bilateral meetings for the academic team to learn about each other's expertise and how it can be coordinated and brought to bear on the research challenge. The project mentors will play a crucial role here, helping the co-investigators to create personal development plans that will build both technical and non-technical skills for successful careers. - A workshop with over 20 representatives from government and industry to discuss previous experience and the perceived obstacles to more ambitious building energy retrofits. - An active online communications strategy incorporating a project website, YouTube videos, and a Twitter hashtag campaign in order to engage the general public and understand how households and commercial building occupants understand the challenge of transforming the UK's building stock. - A feasibility study to summarize the state of the art in new sensing technologies and analysis techniques for building thermal energy performance assessment and to identify major outstanding challenges for future research proposals. The proposed network will therefore facilitate collaboration between academics, industry, government and the general public to address a question of great national importance. The project outputs will help to create a wider understanding of the specific challenges facing the UK's aspirations for the transformation of its building stock as well as highlighting potentially fruitful avenues for research. The network therefore aspires to build upon this twelve-month programme of work and develop significant long-term research collaborations with benefits for academic knowledge, society and the wider economy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J020184/2
    Funder Contribution: 227,091 GBP

    This programme is proposed to answer the EPSRC call on "Carbon capture and storage for natural gas power stations" by forming a close partnership between the University of Southampton and E.ON. The proposed research has a strong focus on industrial needs by integrating with the industrial partner's existing activities for developing CCS technologies suitable for commercial gas power plants. E.ON is generating around 10% of the UK's electricity and is committed to reducing its CO2 emission by 50% by 2030 (1990 baseline). E.ON has setup a dedicated CCS unit to address the technical challenges while one of the priorities is to develop CCS technologies suitable for natural gas power stations. This research specifically targets at natural gas power plants, which has a lower concentration of CO2 approx. 4% compared to 13% from coal-fired plants, and harder to extract, representing the most challenging case for CCS. Carbon capture and storage involves separating the CO2 from emissions so it can be transported and stored away from the atmosphere. The most commercially viable approach to be fitted in natural gas power plants is the post-combustion capture which absorbs CO2 from the flue gas using a chemical reaction - also known as scrubbing, which E.ON has been actively pursuing and will be the focus of this research. Whilst research on the chemical processes has been taking place for several decades, CFD modelling of the reactor is a recent development. E.ON has recognised that CFD plays a vital role in the optimisation of current CCS reactors by including more CFD research in their future research strategy. University of Southampton is a prime place for CFD based research while the School of Engineering Sciences currently holds £5M CFD focused EPSRC projects. The combined expertise forms a strong academic and industrial partnership to tackle current barriers of reactor scale-up in carbon capture using advanced CFD models. By addressing all the challenges outlined in the EPSRC call, this research aims to design an optimised reactor using a novel CFD modelling approach that is capable of achieving in excess of 90% CO2 absorption whilst ensuring the cost of service energy is minimised to below 35%. The new concept idea will incorporate improved mixing designs and improved heat transfer whilst reducing reactor size. It is planned through the enhancement of current CFD multiphase models to incorporate reaction and the inclusion of flow control devices that an optimal structured packing arrangement, which promotes the reaction process whilst reducing pressure drop, can be found. This project will not only produce conceptual ideas developed through enhance CFD methods but will also perform tests, in a lab-scale reactor, to determine its validity with respect to its flow dynamics and would potentially lead to the production of intellectual property.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016362/1
    Funder Contribution: 3,527,890 GBP

    The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K002252/1
    Funder Contribution: 5,621,020 GBP

    The UK electricity system faces challenges of unprecedented proportions. It is expected that 35 to 40% of the UK electricity demand will be met by renewable generation by 2020, an order of magnitude increase from the present levels. In the context of the targets proposed by the UK Climate Change Committee it is expected that the electricity sector would be almost entirely decarbonised by 2030 with significantly increased levels of electricity production and demand driven by the incorporation of heat and transport sectors into the electricity system. The key concerns are associated with system integration costs driven by radical changes on both the supply and the demand side of the UK low-carbon system. Our analysis to date suggests that a low-carbon electricity future would lead to a massive reduction in the utilisation of conventional electricity generation, transmission and distribution assets. The large-scale deployment of energy storage could mitigate this reduction in utilisation, producing significant savings. In this context, the proposed research aims at (i) developing novel approaches for evaluating the economic and environmental benefits of a range of energy storage technologies that could enhance efficiency of system operation and increase asset utilization; and (ii) innovation around 4 storage technologies; Na-ion, redox flow batteries (RFB), supercapacitors, and thermal energy storage (TES). These have been selected because of their relevance to grid-scale storage applications, their potential for transformative research, our strong and world-leading research track record on these topics and UK opportunities for exploitation of the innovations arising. At the heart of our proposal is a whole systems approach, recognising the need for electrical network experts to work with experts in control, converters and storage, to develop optimum solutions and options for a range of future energy scenarios. This is essential if we are to properly take into account constraints imposed by the network on the storage technologies, and in return limitations imposed by the storage technologies on the network. Our work places emphasis on future energy scenarios relevant to the UK, but the tools, methods and technologies we develop will have wide application. Our work will provide strategic insights and direction to a wide range of stakeholders regarding the development and integration of energy storage technologies in future low carbon electricity grids, and is inspired by both (i) limitations in current grid regulation, market operation, grid investment and control practices that prevent the role of energy storage being understood and its economic and environmental value quantified, and (ii) existing barriers to the development and deployment of cost effective energy storage solutions for grid application. Key outputs from this programme will be; a roadmap for the development of grid scale storage suited to application in the UK; an analysis of policy options that would appropriately support the deployment of storage in the UK; a blueprint for the control of storage in UK distribution networks; patents and high impact papers relating to breakthrough innovations in energy storage technologies; new tools and techniques to analyse the integration of storage into low carbon electrical networks; and a cohort of researchers and PhD students with the correct skills and experience needed to support the future research, development and deployment in this area.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L001039/1
    Funder Contribution: 1,005,770 GBP

    The project will provide strategic insights regarding the integration of the transport sector into future low carbon electricity grids, and is inspired by limitations in current grid investment, operation and control practices as well as regulation and market operation, which may prevent an economically and environmentally effective transition to electric mobility. Although various individual aspects of the operation of electricity systems within an integrated transport sector have received some research attention, integrated planning of the grid, EV charging infrastructure and ICT (information and communication technologies) infrastructure design have not been addressed yet. In this proposal we propose to tackle these challenges in an integrated manner. At the heart of our proposal is a whole systems approach. It recognises the need to consider: EV demand and flexibility, electricity network operation and design, charging infrastructure operation and investment, ICT requirements and business models for electric mobility. This is essential when considering constraints imposed by the network on EV charging, and in return the requirements imposed by EVs on the system design and operation. This research will place emphasis on future energy scenarios relevant to the UK and China, but the tools, methods and technologies we develop will have wider applications. Specifically, a number of infrastructure planning related challenges for the massive rollout of EV have yet to be comprehensively investigated. First, traditional models of the travel of vehicles are based on the statistical prediction of aggregate-level travel demand without capturing the behavioural characterisation of users' driving requirements and preferences. Hence, this project will investigate new alternative activity-based travel demand models capturing in a bottom-up approach the behavioural basis of individual users' decisions regarding participation in activities yielding driving needs, behavioural aspects related to EV adoption and alternative EV charging strategies, as well as the characteristics of EV and the charging infrastructure. Unlike the existing models that analyse the EV impacts on isolated sectors of the power system, this project will assess economic effects on generation, transmission and distribution sectors simultaneously and subsequently reveal trade-offs between the cost and benefit streams of different EV charging strategies for different actors in the electricity chain. Furthermore, the closely related problem of EV charging infrastructure and ICT infrastructure planning -which has a central role in the massive EV rollout- has been almost completely neglected. This research project will examine novel risk-constrained stochastic optimization approaches in order to address the challenge of strategically investing in EV recharging and ICT infrastructures ahead of need, and will analytically investigate the interdependence between the power systems and EV enabling infrastructure planning. This project will also investigate alternative business models for the EV market integration and will propose a framework providing the opportunity for EVs to simultaneously support more efficient system operation and investment in assets across the entire electricity system chain. This research will formulate a new decentralised, market-based planning mechanism appropriate for deregulated power system environment and enable the investigation of the impact of alternative market designs and arrangements on the cost effectiveness of EV integration. Finally, a set of comprehensive use cases employing tools and methodologies developed in the project will be employed to understand the role and the importance of electric mobility in future UK and China low carbon systems and produce a suitable commercial and regulatory framework and a set of policy recommendations on ways of supporting the optimal deployment of EV infrastructure.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.