
Radboud Universitair Medisch Centrum, Department of Medical Imaging
Radboud Universitair Medisch Centrum, Department of Medical Imaging
4 Projects, page 1 of 1
assignment_turned_in ProjectPartners:Leids Universitair Medisch Centrum, Divisie 2, Radiologie, Laboratorium voor Klinische en Experimentele Beeldverwerking (LKEB), Erasmus MC, Genetica, Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Biomedische Technologie - Department of Biomedical Engineering, Biomodelering en Bioinformatica, Universitair Medisch Centrum Utrecht, Divisie Beeld, Image Sciences Institute, Erasmus MC, Applied Molecular Imaging Erasmus MC +13 partnersLeids Universitair Medisch Centrum, Divisie 2, Radiologie, Laboratorium voor Klinische en Experimentele Beeldverwerking (LKEB),Erasmus MC, Genetica,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Biomedische Technologie - Department of Biomedical Engineering, Biomodelering en Bioinformatica,Universitair Medisch Centrum Utrecht, Divisie Beeld, Image Sciences Institute,Erasmus MC, Applied Molecular Imaging Erasmus MC,Maastricht UMC+, CARIM - School for Cardiovascular Diseases, Biochemie,LUMC,Erasmus MC, Department of Cardiology, Biomedical Engineering,Maastricht UMC+, GROW - School for Oncology and Developmental Biology,Radboud universitair medisch centrum, Anatomie,Wageningen University & Research, Departement Dierwetenschappen, Celbiologie & Immunologie (CBI),Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Biomedische Technologie - Department of Biomedical Engineering, Cardiovascular Biomechanics,Radboud Universitair Medisch Centrum, Department of Medical Imaging,Leids Universitair Medisch Centrum, Biomedical Data Sciences, Medische Statistiek,Universitair Medisch Centrum Groningen, Radiologie, Nucleaire Geneeskunde en Moleculaire Beeldvorming,Amsterdam UMC - Locatie AMC, Biomedical Engineering & Physics,Universitair Medisch Centrum Utrecht, Divisie Beeld, Afdeling Radiologie,Radboud universitair medisch centrum, MUSIC, RadiologieFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 184.037.009Imaging inside living beings is important to understand how life develops, how healthy bodies work, and how diseases begin and progress. This demands specialized equipment and knowledge. AMICE will develop such techniques and bring them into a nationwide preclinical infrastructure. This will help researchers acquire more information. In addition, AMICE will promote re-use of images to increase efficiency in science. Through this AMICE will help Dutch life scientists revolutionize their research with unique and innovative imaging techniques and to stay at the top of the international science community.
more_vert assignment_turned_in Project2023 - 2024Partners:Radboud Universitair Medisch Centrum, Radboud Universiteit Nijmegen, Radboud universitair medisch centrum, Radboud Universitair Medisch Centrum, Department of Medical Imaging, Radboud Universiteit Nijmegen, Donders Institute - Donders Institute for Brain, Cognition and Behaviour, Centre for Brain, Cognition and Behaviour +2 partnersRadboud Universitair Medisch Centrum,Radboud Universiteit Nijmegen,Radboud universitair medisch centrum,Radboud Universitair Medisch Centrum, Department of Medical Imaging,Radboud Universiteit Nijmegen, Donders Institute - Donders Institute for Brain, Cognition and Behaviour, Centre for Brain, Cognition and Behaviour,Radboud universitair medisch centrum,Radboud universitair medisch centrum, Radiologie en Nucleaire GeneeskundeFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OSF23.1.037Animal research direly needs an open science revolution! Traditional barriers for sharing data (i.e. privacy concerns) do not apply to data collected in animals. Still, the open science mindset hasn’t permeated the animal research community. We are actively changing this. To open up animal research, we will aggregate and curate datasets from multiple animal imaging centers worldwide, and distribute open software for preprocessing. To enable laboratories to engage in open science practices, we will organize workshops to transfer technical know-how to our research community. By leading by example, we hope to inspire the next generation of animal researchers.
more_vert assignment_turned_in ProjectFrom 2023Partners:Radboud Universitair Medisch Centrum, Koninklijke Nederlandse Akademie van Wetenschappen, Maastricht University, Radboud Universiteit Nijmegen, Maastricht University, Faculty of Psychology and Neuroscience, Cognitive Neuroscience +12 partnersRadboud Universitair Medisch Centrum,Koninklijke Nederlandse Akademie van Wetenschappen,Maastricht University,Radboud Universiteit Nijmegen,Maastricht University, Faculty of Psychology and Neuroscience, Cognitive Neuroscience,Radboud Universitair Medisch Centrum, Department of Medical Imaging,Leids Universitair Medisch Centrum, Divisie 2, Radiologie, Laboratorium voor Klinische en Experimentele Beeldverwerking (LKEB),Amsterdam UMC,Radboud Universiteit Nijmegen, Donders Institute - Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging,Radboud universitair medisch centrum,Universitair Medisch Centrum Utrecht,Radboud Universiteit Nijmegen, Donders Institute - Donders Institute for Brain, Cognition and Behaviour,Radboud universitair medisch centrum,LUMC,Koninklijke Nederlandse Akademie van Wetenschappen, Spinoza Centre for Neuroimaging,Universitair Medisch Centrum Utrecht, Divisie Beeld, Afdeling Radiologie,Amsterdam UMC - Locatie AMC, Radiologie en Nucleaire GeneeskundeFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 184.036.009The Dutch National 14Tesla Initiative in Medical Science will establish the first MRI system at this field strength in the world. It will provide a national and international resource that will help cement the leading position of the Netherlands in ultra-high field imaging techniques and their application in Medicine and Neuroscience. The additional sensitivity afforded by the system combined with the improved ability to discern metabolite signals will offer scientists a powerful instrument for better characterization of a range of diseases and new insights into the workings of the brain.
more_vert assignment_turned_in Project2022 - 2025Partners:Radboud Universitair Medisch Centrum, Radboud universitair medisch centrum, Pathologie, Radboud Universitair Medisch Centrum, Department of Medical Imaging, Radboud universitair medisch centrum, Department of Radiation Oncology, Radiotherapy and OncoImmunology Laboratory, Radboud universitair medisch centrumRadboud Universitair Medisch Centrum,Radboud universitair medisch centrum, Pathologie,Radboud Universitair Medisch Centrum, Department of Medical Imaging,Radboud universitair medisch centrum, Department of Radiation Oncology, Radiotherapy and OncoImmunology Laboratory,Radboud universitair medisch centrumFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 2021.061In this project, we ask teams of students to take part in four running scientific medical image analysis challenges. In the project, they will apply knowledge and skills in image analysis and machine learning acquired in the first part of the course, especially deep learning technology. Our goal is that the students become familiar with deep learning techniques used in medical image analysis and that they learn to apply and compare the effectiveness of different approaches in a challenging real-world problem.
more_vert