
DRD Power Ltd
DRD Power Ltd
3 Projects, page 1 of 1
assignment_turned_in Project2016 - 2017Partners:Heliex Power Ltd, University of Glasgow, University of Glasgow, Wellman Furnaces Ltd, Star Refrigeration Ltd +5 partnersHeliex Power Ltd,University of Glasgow,University of Glasgow,Wellman Furnaces Ltd,Star Refrigeration Ltd,Wellman Furnaces Ltd,Heliex Power Ltd,DRD Power (United Kingdom),DRD Power Ltd,Star Refrigeration LtdFunder: UK Research and Innovation Project Code: EP/N005228/1Funder Contribution: 98,480 GBPThe UK has set a target to cut its greenhouse gas emissions by at least 80% by 2050, relative to 1990 levels. To achieve this target, a reduction in energy consumption of around 40% will be required, and therefore significant improvements in energy efficiency are necessary. Energy recovery from industrial waste heat sources is considered to offer a significant contribution to improving overall energy efficiency in the energy-intensive industrial sectors. In the UK, a report recently published by the Department of Energy & Climate Change (DECC) identified 48 TWh/yr of industrial waste heat sources, equivalent to around one sixth of UK industrial energy consumption. Although waste heat recovery is broadly welcomed by industry, there is a lack of implementation of waste heat recovery systems in UK industrial sectors due to a number of barriers, the most important being poor efficiency. The forecast for global waste heat recovery systems market value is growth to 53 billion US Dollar by 2018, with a compound annual growth rate of 6.5% from 2013 to 2018. Needless to say, there is a huge national and global market for innovative waste heat recovery technologies. Although there are several alternative technologies (at different stages of development) for waste heat recovery, such as heat exchanger, heat pump, Stirling engine and Kalina Cycle power plant, the Organic Rankine Cycle system remains the most promising in practice. Large Organic Rankine Cycle systems are commercially viable for high-temperature applications, however, their application to low-temperature waste heat (<250 Degree C) is in its infancy. Yet more than 60% of UK industrial waste heat sources are in the low temperature band (<250 Degree C). There is clearly a mismatch between Organic Rankine Cycle technology supply and demand, so innovative research and development are highly in demand. This First Grant Scheme project, in response to the challenge of industrial waste heat recovery identified by DECC, aims to develop an innovative Dynamic Organic Rankine Cycle (ORC) system that uses a binary zeotropic mixture as the working fluid and has mechanisms in place to adjust the mixture composition dynamically during operation to match the changing heat sink temperatures, and therefore the resultant system can achieve significant higher annual average efficiencies. The preliminary research shows that a Dynamic Organic Rankine Cycle system can potentially generate over 10% more electricity from low temperature waste heat sources than a traditional one annually. The research will firstly develop a novel Dynamic Organic Rankine Cycle concept by integrating a composition adjusting mechanism into an Organic Rankine Cycle system, so that the mixture composition can be adjusted during the operation of the power plant. A steady-state numerical model will be developed to simulate and demonstrate the working principle and benefits of such a Dynamic Organic Rankine Cycle system. A dynamic numerical model will then be developed to simulate and optimise the control strategy of mixture composition adjustment. Finally, a prototype of such Dynamic Organic Cycle system will be designed and constructed. The Dynamic Organic Rankine Cycle concept and the two numerical models will be validated through a comprehensive experimental research. The Dynamic Organic Rankine Cycle power plants developed through this project can be widely applied to energy intensive industrial sectors such as the iron and steel industry, ceramic manufacturers, cement factories, food industrial, etc. As such power plants can achieve a much higher efficiency; the payback period can be significantly reduced, which would make energy recovery from industrial waste heat sources more profitable. The wide installation of such waste recovery power plants will ultimately reduce the energy demand of these industrial sectors, and therefore improve our energy security.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::22e71c9bc001a3b41843f6f4ca785b81&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::22e71c9bc001a3b41843f6f4ca785b81&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2019Partners:Wellman Furnaces Ltd, IHI Europe Ltd., Super Radiator Coils, University of Glasgow, DRD Power (United Kingdom) +5 partnersWellman Furnaces Ltd,IHI Europe Ltd.,Super Radiator Coils,University of Glasgow,DRD Power (United Kingdom),Super Radiator Coils,Wellman Furnaces Ltd,IHI Europe Ltd.,DRD Power Ltd,University of GlasgowFunder: UK Research and Innovation Project Code: EP/N020472/1Funder Contribution: 713,033 GBPThe UK has set an ambitious target to cut its greenhouse gas emissions by at least 80% by 2050, relative to 1990 levels. Currently, heat accounts for nearly half of the energy consumption in the UK and a third of the nation's carbon emissions. To achieve the UK's carbon reduction target, the residential heating sector has to be substantially decarbonised. A wide range of technologies are at different stage of developments but their energy efficiencies are not all satisfactory. There is clearly a big gap between the demand and supply of cost-effective heating technologies in the UK. There is a urgent need for innovation of low-carbon heating technologies in the UK. This project develops a novel, gas-powered heat pump that integrates a small-scale Rankine Cycle power generator using organic working fluids (i.e. refrigerants) with a vapour-compression heat pump by means of a novel coupling technology. Both the heat rejected by the Rankine Cycle power generator and the heat provided by the heat pump are fully utilised for heating. The novel design allows the condensing temperature of the heat pump to be much lower than that of a single electrically-powered heat pump leading to much higher energy performance. The compact heat exchangers are used to enable the heat pump much small in size. The novel design of the combustion heat exchanger enables efficient and clean combustion processes. The novel heating technology developed through this project is much more efficient than traditional heating technologies, and therefore can significantly reduce the carbon emissions from the residential heating sector in the UK, if widely installed.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::137a9c8405233b4c037962acce35b976&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::137a9c8405233b4c037962acce35b976&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2021Partners:Imperial College London, Synthomer Ltd, British Glass, EDF Energy (United Kingdom), Solar-Polar Limited +27 partnersImperial College London,Synthomer Ltd,British Glass,EDF Energy (United Kingdom),Solar-Polar Limited,Sainsbury's (United Kingdom),Ener-G,Entropea Labs (United Kingdom),Entropea Labs Limited,Synthomer (United Kingdom),Hubbard Products (United Kingdom),Praxair Inc,British Glass,Libertine FPE Ltd,Baxi Heating Ltd,Baxi Heating Ltd,Sabic Americas, Inc.,Heatcatcher Ltd,Solar-Polar Limited,EDF Energy Plc (UK),Ener-G,Libertine FPE (United Kingdom),J Sainsbury PLC,DRD Power Ltd,Linde (United States),British Glass,Sabic Americas, Inc.,Hubbard Products (United Kingdom),EDF Energy (United Kingdom),Heatcatcher Ltd,J SAINSBURY PLC,DRD Power (United Kingdom)Funder: UK Research and Innovation Project Code: EP/P004709/1Funder Contribution: 1,573,520 GBPA 4-year multidisciplinary project aimed at minimising primary-energy use in UK industry is proposed, concerned with next-generation technological solutions, identifying the challenges, and assessing the opportunities and benefits (to different stakeholders) resulting from their optimal implementation. Around 20 companies from component manufacturers to industrial end-users have expressed an interest in supporting this project. With this industrial support, the team has the necessary access and is in a prime position to deliver real impact, culminating in the practical demonstration of these solutions. The proposed project is concerned with specific advancements to two selected energy-conversion technologies with integrated energy-storage capabilities, one for each of: 1) heat-to-power with organic Rankine cycle (ORC) devices; and 2) heat-to-cooling with absorption refrigeration (AR) devices. These technological solutions are capable of recovering and utilising thermal energy from a diverse range of sources in industrial applications. The heat input can come from highly efficient distributed combined heat & power (CHP) units, conventional or renewable sources (solar, geothermal, biomass/gas), or be wasted from industrial processes. With regards to the latter, at least 17% of all UK industrial energy-use is estimated as being wasted as heat, of which only 17% is considered economically recoverable with currently available technology. The successful implementation of these technologies would increase the potential for waste-heat utilisation by a factor of 3.5, from 17% with current technologies to close to 60%. The in-built, by design, capacity for low-cost thermal storage acts to buffer energy or temperature fluctuations inherent to most real heat sources, allowing smaller conversion devices (for the same average input) and more efficient operation of those devices closer to their design points for longer periods. This will greatly improve the economic proposition of implementing these conversion solutions by simultaneously reducing capital and maintenance costs, and improving performance. The technologies of interest are promising but are not economically viable currently in the vast majority of applications with >5-20 year paybacks at best. The project involves targeting and resolving pre-identified 'bottleneck' aspects of each technology that can enable step-improvements in maximising performance per unit capital cost. The goal is to enable the widespread uptake of these technologies and their optimal integration with existing energy systems and energy-efficiency strategies, leading to drastic increases performance while lowering costs, thus reducing payback to 3-5 years. It is intended that technological step-changes will be attained by unlocking the synergistic potential of optimised, application-tailored fluids for high efficiency and power, and of innovative components including advanced heat-exchanger configurations and architectures in order to increase thermal transport while simultaneously reducing component size and cost. Important system-level components are included in the project, whose objective is to assess the impact of incorporating these systems in targeted industrial settings, examine technoeconomic feasibility, and identify opportunities relating to optimal integration, control and operation to maximise in-use performance. A dynamic, interactive whole-energy-integration design and assessment platform will be developed to accelerate the implementation of the technological advances, feeding into specific case-studies and facilitating direct recommendations to industry. Only two international research teams are capable of developing the necessary tools that combine multiscale state-of-the-art molecular thermodynamic theories for fluids, detailed energy-conversion ORC and AR models, and incorporating these into whole-energy-system optimisation platforms. This is truly a world-leading development.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5dec15d37b4c5c426f77bf897b9b4972&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5dec15d37b4c5c426f77bf897b9b4972&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu