
SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE
SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE
7 Projects, page 1 of 2
Open Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2028Partners:CSIC, UPM, TU Delft, SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE, MORPH STUDIO +8 partnersCSIC,UPM,TU Delft,SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE,MORPH STUDIO,AMS Institute,NEO ECO,EIfI-Tech.,LURTIS RULES SL,AVRA,EGIS CONCEPT,FI GROUP BELGIUM,Lviv Polytechnic National UniversityFunder: European Commission Project Code: 101138678Overall Budget: 4,355,760 EURFunder Contribution: 3,879,170 EURZEBAI is an ambitious integrative project in which a broad range of interdisciplinary teams collaborate to develop a new methodology that aims to change the way that Zero-emission buildings are designed, by integrating all interdependent analysis and partial alternative decision-making processes under a holistic approach that allows the evaluation of a design simultaneously taking into account: energy performance, environmental impact, indoor environmental quality, and cost-effectiveness. For this purpose, we will require to develop a database of well-characterised materials and make an estimation of discrepancies between simulated and actual building performance. The methodology that will be used is artificial intelligence techniques to optimise the selection of materials and systems in different aspects of the building design. The AI-assisted methodology aims to make the design process more efficient and user-friendly while incorporating all environmental quality and cost-effectiveness objectives. This approach will enable the optimisation of new architectural designs towards scalable Zero Energy Building (ZEB) design in different climates, usages, and building patterns, with the ultimate goal of achieving a zero-emission building stock by 2050. During the project, we will test ZEBAI methodology with four representative demonstrators (located in Ukraine, Spain, the United Kingdom, and the Netherlands). ZEBAI relies on previously funded European research projects and aligns with several national initiatives in which the partners collaborate.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2025 - 2027Partners:CUERVA ENERGIA SLU, SOCE, SIEMENS NEDERLAND NV, CIRCE, SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE +2 partnersCUERVA ENERGIA SLU,SOCE,SIEMENS NEDERLAND NV,CIRCE,SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE,TU Delft,R2M SOLUTION SPAIN SLFunder: European Commission Project Code: 101192574Overall Budget: 2,499,960 EURFunder Contribution: 2,499,960 EURThe ESTELAR project is dedicated to modernizing power grids to accommodate renewable energy sources and enhance energy efficiency, focusing specifically on the virtualization of substations to improve the grid's sustainability and resilience. By redefining the operation and concept of substations—key components within the power grid infrastructure—ESTELAR aims to facilitate the energy transition towards carbon neutrality. ESTELAR is based on three innovative pillars: advanced communication strategies, a robust computational framework, and the transformative Digital Substation of the Future architecture. The first pillar focuses on enhancing substation communication systems to facilitate seamless and real-time integration of physical and virtual components. The second pillar aims to boost the processing and data handling capabilities of substations across both cloud and edge computing platforms for future computational demands. The third pillar is centered on developing a modular and scalable substation architecture that incorporates advanced monitoring, protection, and control through digital twinning. To ensure the efficacy and readiness of these technologies, ESTELAR will conduct rigorous validations in two Virtualization Testing Laboratories located in Spain and The Netherlands. These facilities will allow for realistic, controlled testing environments to refine and perfect the technologies prior to widespread implementation. The project unites nine partners from four EU countries, combining expertise from research centers, technology providers, and distribution system operators to comprehensively approach substation virtualization. ESTELAR facilitates renewable energy integration, bolsters grid resilience, and supports wider electrification. This positions it as a key player in accelerating the EU's transition to a climate-neutral economy.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2026Partners:Adaion Smart Grid Solutions S.L., RTE RESEAU DE TRANSPORT D ELECTRICITE SA, REN - REDE ELECTRICA NACIONAL S.A., COLLABORATIVE RESEARCH FOR ENERGY SYSTEM MODELING, E.ON ESZAK-DUNANTULI ARAMHALOZATI ZARTKORUEN MUKODO RT +67 partnersAdaion Smart Grid Solutions S.L.,RTE RESEAU DE TRANSPORT D ELECTRICITE SA,REN - REDE ELECTRICA NACIONAL S.A.,COLLABORATIVE RESEARCH FOR ENERGY SYSTEM MODELING,E.ON ESZAK-DUNANTULI ARAMHALOZATI ZARTKORUEN MUKODO RT,UCY,ECO ESO ELECTRICITY SYSTEM OPERATOR,R&D NESTER,ETRA INVESTIGACION Y DESARROLLO SA,ENVELIO GMBH,SOUTHEAST EUROPEAN TECHNOLOGICAL COMPANY LTD,EPESA,MAVIR ZRT,ENSIEL,APG,TENNET,HEDNO S.A.,HSE,T.G. TECHNIKI MONOPROSOPI I.K.E.,UL,SOFTWARE COMPANY EOOD,ENEL X WAY SRL,STEDIN DELFLANDSTEDIN MIDDEN HOLLAND STEDIN UTRECH,UoA,EDG West,ELECTRICITY TRANSMISSION SYSTEM OPERATOR,SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE,E.ON ONE GMBH,Entra Energy,ENGINEERING - INGEGNERIA INFORMATICA SPA,RWTH,AMPRION GMBH,EIMV,INESC TEC,COMPANIA NATIONALA DE TRANSPORT AL ENERGIEI ELECTRICE TRANSELECTRICA SA,ENTSO-E,RSE SPA,ED LUXEMBOURG,RAE,TP AEOLIAN DYNAMICS LTD,ENEL GRIDS S.R.L.,TU Dortmund University,CINTECH SOLUTIONS LTD,REE,E.ON ENERGIE DEUTSCHLAND GMBH,Comillas Pontifical University,UBITECH ENERGY,WESTNETZ,OMIE,F4STER - FUTURE 4 SUSTAINABLE TRANSPORT AND ENERGY RESEARCH INSTITUTE ZARTKORUEN MUKODO TARSASAG,TRI,CUERVA ENERGIA SLU,HELLENIC ENERGY EXCHANGE,University of Bucharest,EAC,VITO,CIRCE,TU Delft,ENEL X SRL,ADMIE,TURNING TABLES SOCIEDAD LIMITADA,BUTE,HUPX MAGYAR SZERVEZETT VILLAMOSENERGIA-PIAC ZARTKORUEN MUKODO RESZVENYTARSASAG,FHG,Liander (Netherlands),Artelys (France),ARETI S.P.A.,EG,EDSO,JEDLIX B.V.,TSO CYPRUS,UPRCFunder: European Commission Project Code: 101136119Overall Budget: 25,216,100 EURFunder Contribution: 20,000,000 EURThe current international situation makes the process of energy transition more critical for Europe than ever before. It is a key requirement to increase the penetration of renewables while aiming at making the infrastructure more resilient and cost-effective. In this context, digital twins (DT) build a key asset to facilitate all aspects of business and operational coordination for system operators and market parties. It is of fundamental importance to now start a process of agreement at European level so not to develop isolated instances but a federated ecosystem of DT solutions. Each operator should be able to make its own implementation decisions while preserving and supporting interoperability and exchange with the remaining ecosystem. Exactly this is the vision of the TwinEU consortium: enabling new technologies to foster an advanced concept of DT while determining the conditions for interoperability, data and model exchanges through standard interfaces and open APIs to external actors. The envisioned DT will build the kernel of European data exchange supported by interfaces to the Energy Data Space under development. Advanced modeling supported by AI tools and able to exploit High Performance Computing infrastructure will deliver an unprecedented capability to observe, test and activate a pan-European digital replica of the European energy infrastructure. In this process, reaching consensus is crucial: the consortium therefore gathers an unprecedented number of actors committed to achieving this common goal. The concepts developed by TwinEU span over 15 different European countries with a continuous coverage of the continental map. Demos will encompass key players at every level from transmission to distribution and market operators, while also testing the coordinated cross-area data exchange. The consortium also includes relevant industry players, research institutions and associations with a clear record in developing innovative solutions for Europe.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2027Partners:ABILIX SOFT LTD, University of Florence, SOUTHEAST EUROPEAN TECHNOLOGICAL COMPANY LTD, UBITECH ENERGY, CARTIF +8 partnersABILIX SOFT LTD,University of Florence,SOUTHEAST EUROPEAN TECHNOLOGICAL COMPANY LTD,UBITECH ENERGY,CARTIF,VEOLIA,Steel Tech,Goa University,SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE,SIVL,RINA-C,EHP,HIREFFunder: European Commission Project Code: 101136186Overall Budget: 7,197,630 EURFunder Contribution: 5,586,330 EURWorldwide Data centers (DC) are estimated to account for 1 to 2% of electricity usage. Regarding the European context, it is expected that data centres will account for 98.5 TWh/year in 2030. So it is evident that there is an important potential to recover waste heat from the cooling processes of DCs. The THUNDER project aims to overcome existing barriers hampering a wide adoption of DCs waste heat recovery strategies, providing an innovative, efficient and cost attractive Seasonal Thermal storage based on Thermochemical Materials. THUNDER solutions stretch across the value chain (data centre innovative storage providers, heat pump manufacturers and district energy company operators). The THUNDER solutions will be validated in field conditions at the Demosite in Bulgaria where the practice of WHR from DC is not widely diffused thus boosting the market also in those areas. Deepened replicability assessment will be done and pre-feasibility analysis developed in 10 further Demosites across all over Europe. Co-design and training workshops will be organized at the replicability identified sites to promote stakeholders engagement and social awareness thus unlocking barriers and make it real THUNDER replication.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2027Partners:CINTECH SOLUTIONS LTD, INALIO LTD, ICCS, University of Southampton, Xlinks Limited +12 partnersCINTECH SOLUTIONS LTD,INALIO LTD,ICCS,University of Southampton,Xlinks Limited,SMART SUSTAINABLE SOCIAL INNOVATIONS MONOPROSOPI IKE,ECO ESO ELECTRICITY SYSTEM OPERATOR,UCY,ESPCI Paris,ASG SUPERCONDUCTORS SPA,FUTURE ENERGY INNOVATIVE TECHNOLOGIES I.K.E.,ADVANCED TECHNOLOGIES AND INNOVATIONS COMPANY LTD,KOZHASZNU ALAPITVANY A HUMAN ELEKTROTECHNIKAERT,University of Glasgow,RINA-C,EAC,IWOFunder: European Commission Project Code: 101172819Funder Contribution: 5,364,060 EURThe EU goals for the clean energy transition require at least a 55% reduction in greenhouse gas emissions (from 1990 levels) by 2030, according to the ‘Fit for 55’ package. To achieve these goals, electricity grids will be required to operate in an overall context of 50% electricity production from RES of any scale by 2030. The huge rise in the share of solar PV and wind in total generation fundamentally reshapes the European power system and significantly increases the need to build new HVAC or HVDC cable connections. These will have a crucial role to link islands or offshore wind parks to mainland or to connect countries over long distances. The CABLEGNOSIS project aims to deliver innovative cable technologies that will support the clean energy transition era for the 2050 targets set at European level. CABLEGNOSIS project will develop innovative insulation and conductor design technologies, high performance and environmentally friendly cable insulation materials, ageing studies of superconducting cables, recyclability technologies for the materials used in power cables, as well as pre-fault condition, aging and remote monitoring AI-based tools. A feasibility assessment framework and detailed analysis for the use of superconducting cables for submarine connections. A respective feasibility analysis will be developed for the offshore wind parks in The Netherlands and Germany. The CABLEGNOSIS technologies will be validated in five European countries (Italy, UK, Greece, Hungary, Cyprus). CABLEGNOSIS will deliver a complete deployment plan for supporting the development and operation of efficient, reliable and environmentally friendly cable systems to support the energy transition. The deployment plan will provide the scalability and replicability framework of using the CABLEGNOSIS technologies in future cable development projects, with emphasis in the UK-Morocco interconnection, Cyprus-Israel interconnection, offshore developments in the Aegean Sea.
more_vert
chevron_left - 1
- 2
chevron_right