Powered by OpenAIRE graph
Found an issue? Give us feedback

BASF (Germany)

50 Projects, page 1 of 10
  • Funder: UK Research and Innovation Project Code: EP/Y005309/1
    Funder Contribution: 443,058 GBP

    Global energy consumption is rising daily at an astronomical rate. In 2021, we used 176,431 TWh worldwide, which was more than double the amount consumed in 1982 and over six times that used in 1950. Whilst the use of renewable energy has been increasing in recent years, it still only accounts for ca. 16% of our energy consumption, and it is projected that renewables will account for only ca. 20% of global consumption in 2040. Currently, the biggest barrier to the uptake of renewable energy, particularly wind and solar electricity, is the inherent intermittency of the power production and the lack of scalable methods of storing electrical energy. Despite this, there is still a mismatch between the R&D efforts on energy capture and energy storage. Existing energy storage devices are assembled via multiple laborious processing steps and typically employ flammable solvents and fossil fuel-derived materials with poor thermal and chemical stability. Hence, there is a need to identify new solutions for sustainable energy storage. Together with this, materials generated from renewable feedstocks are desperately required to displace fossil fuel-derived products currently used around the world. Strikingly, only ca. 1% of all current polymer and plastic materials are made from renewable resources. The aim of this project is to develop safe, reliable, sustainable and commercially relevant next generation responsive gel electrolyte materials which will facilitate better green energy storage solutions. We will create bespoke functional, renewable polymers that possess unique material properties which make them excellent choices for a plethora of practical applications compared to existing materials currently used. When these unique polymers are combined with ionic liquids, they can form hybrid ionic liquid-polymer gel electrolytes called ionogels - these ionogels are not only more environmentally friendly gel electrolytes but they have enhanced, responsive mechanical properties with a broader scope of applications in fuel and solar cells, transistors, actuators and battery electrolytes. This transformative research programme will deliver new sustainable, responsive ionogel materials with minimal polymer loading (less than 3% w/w), achieved using novel block copolymer solution self-assembly strategies and importantly via greener one-pot processes for in situ ionogel formation, significantly enhancing the industrial viability of these ionogel preparation routes. The ionogels developed in this project will address the significant shortcomings in the underutilisation of renewable energy in the coming years and will thus contribute to the UK's drive to achieve net zero greenhouse gas emissions by 2050. Given the desperate need for sustainable energy storage solutions, as recognised by the UN with Sustainable Development Goal 7 on affordable and clean energy, the proposed research is timely and impactful.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/E022197/1
    Funder Contribution: 372,780 GBP

    Oil from seeds forms a major source of nutrition for humans and livestock. It also has many important industrial uses, among them providing an increasingly relevant source of renewable energy (bio-diesel). The rate of oil accumulation in developing seeds is governed predominantly by biosynthesis. However, a number of studies have reported that a significant amount of oil is also turned over during seed development. Blocking this turnover could potentially elevate oil levels by between 5 and 25%, depending on the species and growth conditions. Controlling oil breakdown in seeds requires knowledge of the molecular mechanism, which until recently was completely lacking. This process also occurs after seed germination where it plays a fundamentally important role in providing energy for early seedling growth. I have gained a new insight into the mechanism of oil breakdown by isolating mutants in the model oilseed plant Arabidopsis that are impaired in post-germinative growth. I have discovered that one of these mutants, called sugar-dependent1, has a defect in the enzyme triacylglycerol hydrolase, which catalyses the first step in oil breakdown. The rate of oil breakdown is dramatically slowed in this mutant and as a consequence the developing seeds accumulate significantly more oil. The goals of this proposal are (i) To study how SDP1 is regulated and establish whether oil breakdown can be inhibited during seed development and not following germination. This would allow oil yield to be enhanced with the minimum impact on seedling vigour. (ii) To identify additional structural and regulatory proteins that function with SDP1 to govern the rate of oil breakdown. Disruption of these proteins will be used to block oil breakdown completely and thereby maximize oil accumulation. (iii) To investigate the role of SDP1 in the crop species oilseed rape and determine if oil yield can also be increased by impairing oil turnover. Addressing these objectives will contribute greatly to our fundamental knowledge of the mechanism and regulation of lipolysis, which is major metabolic process that is essential for the life cycle of many plants. The work could also lead to the development of crop plants with a higher oil yield.

    more_vert
  • Funder: UK Research and Innovation Project Code: MR/W006995/1
    Funder Contribution: 1,447,620 GBP

    Biodegradable polymers are materials designed to gradually break down into harmless constituents, and eventually disappear after having fulfilled their structural function. They are attracting enormous interest as potential replacements to traditional inert plastics in an attempt to address the plastic pollution problem. Applications include sustainable packaging, agricultural films and fishing nets, among others. Biodegradable polymers are also materials of choice for the design of temporary biomedical implantable devices (e.g. stents, sutures, or orthopaedic fixtures), thanks to their biocompatibility and tunable mechanical properties. From an engineering design perspective, biodegradable polymers introduce new challenges due to seemingly contradictory requirements: they need to degrade relatively fast after having completed their intended function, but they must also maintain suitable mechanical properties (stiffness, strength, toughness) during service. Addressing these challenges requires a fundamental understanding of the coupled chemo-mechanical effects that dictate the performance of these materials. On the one hand, chemical degradation in water progressively decreases the mechanical properties of the material and causes swelling. On the other hand, mechanical stresses arising from externally-applied loads or geometrical imperfections significantly impact the degradation rate. The proposed research aims to elucidate the role of mechanics in the chemical degradation of polymers in aqueous environment. This will be achieved by integrating systematic experiments on model polymers (PLA) degrading under loads and new physics-based constitutive models coupling mechanics and chemistry (hydrolysis reaction and diffusion of water and reaction products). The proposed models will be implemented within robust computational tools enabling the in-silico testing of biodegradable components under complex loading conditions up to failure. Ultimately, the research aims to answer the following question: "can we harness mechanical effects to control the degradation rate and failure mode for specific applications?". The new knowledge, models and computational tools delivered by this project will be directly relevant for a broad range of applications in packaging, engineering and healthcare. Benefits include guidelines for the formulation of polymer systems with targeted mechanical and degradation properties, as well as design guidelines and predictive simulation tools at component level. These will reduce the need for costly and time-consuming trial-and-error experimental approaches, and improve performance and safety of biodegradable devices.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W036479/1
    Funder Contribution: 618,250 GBP

    Crystals have provided fascination and utility to man since the dawn of time taking an important place in ancient civilisations with talismanic properties or as the functional quartz lens in the early Keplerian telescopes. The natural world utilises crystals for not dissimilar optical advantage with the eyes of trilobites consisting of calcite (calcium carbonate) lenses. Shells on the beach are also principally calcium carbonate, some parts calcite and other parts a different mineral aragonite (but still calcium carbonate). Indeed the beautiful iridescent mother-of-pearl often seen on the inside of a shell are crystals of aragonite that the organism has carefully controlled to be of a size about the same as the wavelength of light - and hence the light scattering. But crystals are also used in almost every aspect of our modern life, from the pharmaceuticals that improve our health to the catalysts that make our chemicals to the opto-electronic gadgets that enrich our lives. Crystals are organised matter, where molecules are arranged next to one another in a regular, infinitely repeating array. Mistakes in this organisation results in imperfections or defects in the crystal that can vastly alter the properties and use of the crystal. The crystals perform a clever trick by normally discarding mistakes back into solution as and when they occur and only ultimately accepting correctly positioned molecules. Nevertheless, defects do still occur. These solid crystals grow out of solutions or from the gas phase via the controlled precipitation of the molecules that make up the final structure and, because of the enormous importance of crystals, there has been interest over the past 100 years in how these crystals form. However, it is only in the past decade that modern microscopy tools that are able to monitor the growing crystals at the molecular scale have been available and deployed in such studies. This is providing a vast amount of new detailed information about the intricacies of the crystal-growth process that provides clues as to how Nature does - and scientists may - control these processes. Every crystal structure is different and every crystal shows peculiarities in the manner of growth, however, there are always some underlying rules that govern all crystal growth. The objective of this work is to set up a state-of-the-art microscope facility that is able to observe crystals growing almost molecule-by-molecule so that the users can better understand how their crystals are growing. Armed with this knowledge they will be able to adjust how their crystals grow in order to produce crystals of the right size, shape and purity to perform the function of interest. Whether this is a medicine such as paracetamol, a material to go in your computer such as a battery or a material to capture carbon dioxide to improve climate change. The facility will be available to all those interested in crystallisation processes.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/E004326/1
    Funder Contribution: 493,371 GBP

    Fish oils have been historically associated with health-beneficial properties and over the last few years a large number of scientific studies have demonstrated the benefits of a diet rich in these oils. In particular, some of the fatty acids found in fish oils seem to play a role in preventing heart attacks and other circulatory problems. These fatty acids are the omega-3 long chain polyunsaturated fatty acids (abbreviated to omega-3 LC-PUFAs), and they are now widely viewed as vital constituents of human diet. As well as being able to play a role in preventing diseases, fish oil omega-3 LC-PUFAs are also very important in human growth and development. For example, breast milk contains these fatty acids, and it is for this reason formula (replacement) milks are now enriched in these fats. The primary source of omega-3 LC-PUFAs is fish oils, but unfortunately global fish stocks are now in severe decline (mainly due to decades of over-fishing). This not only represents an ecological crisis, but may also, in the future, severely hamper the availability of fish oils to maintain a healthy diet. Moreover, there are growing concerns about the contamination of current wild fish stocks with pollutants such as heavy metals, plasticizers and dioxins. Therefore, there is an urgent need to find a new sustainable source of these very important fatty acids. One approach that we are undertaking is to try and make fish oils in plants. This requires genetic engineering of a suitable plant (ideally an oilseed), because there are no known examples of higher plants which synthesise omega-3 LC-PUFAs. To carry out this work, the genes which direct the synthesis of omega-3 LC-PUFAs need to be introduced in a plant. These genes come from the tiny microbes (such as algae) which live in the ocean and synthesise omega-3 LC-PUFAs, so the project involves moving these genes into plants, to allow the synthesis of these important fatty acids in a clean and sustainable manner.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.