
The Restart Project
The Restart Project
3 Projects, page 1 of 1
assignment_turned_in Project2024 - 2024Partners:GOOD THINGS FOUNDATION, London Borough of Hammersmith & Fulham, Dsposal, Comply Direct, Environcom England Ltd +19 partnersGOOD THINGS FOUNDATION,London Borough of Hammersmith & Fulham,Dsposal,Comply Direct,Environcom England Ltd,Brunel University London,RECOUP Ltd,Topolytics,Material Focus,REPIC Ltd,Beko Plc,n2s,Biffa plc,S2S Ltd,Green Alliance,PragmatIC (United Kingdom),Giraffe Innovation Ltd,The Restart Project,ReLondon,AMDEA,British Telecommunications plc,TechUK,Roberts Radio Ltd,Currys Group LimitedFunder: UK Research and Innovation Project Code: MR/X036081/1Funder Contribution: 1,560,640 GBPVision - The fellowship seeks to radically transform the linear Waste Electrical and Electronic Equipment (WEEE) system to develop a low-carbon, Circular Economy (CE) for Electrical and Electronic Equipment (EEE) in the UK. This fellowship incorporates a programme of research that establishes an innovative whole systems design approach to WEEE, integrating systems engineering, engineering design and product-service system design methodologies. The fellowship will to lead the academic work necessary to support a fully CE for EEE in the UK, through effective reduce, reuse, repair, remanufacturing, recycling and recovery, with the aim of making the UK the first country in the world to eliminate WEEE. Rationale and strategic importance - The rapid development of digitalisation has brought disruptive changes to the economy and life, as well as a growth in the consumption of Electrical and Electronic Equipment (EEE). Waste Electrical and Electronic Equipment (WEEE) is now the fastest growing waste stream in the UK and globally. The UK generates up to 24.9kg per head and throws 155,000 tonnes of WEEE in household bins every year. In 2013, the UK set out WEEE Regulations, to encourage safe and responsible collection, recycling and recovery. However, WEEE collection rates show that the UK is failing to meet its targets. Less that 35% of EEE placed on the market is recovered, meaning that the vast majority is sent to landfill, incinerated or illegally exported to other countries at its end of life. Developing a Circular Economy (CE) for EEE is expected to result in widespread economic, environmental and societal benefits for the UK. The value of precious metals found within UK's unrecovered WEEE is over £370 million annually. WEEE also includes many critical raw materials (e.g. magnesium, cobalt and tungsten) which are of high supply chain risk and importance to the UK. For example, China provides 98% of the EU's supply of rare earth elements, and South Africa provides 71% of the EU's platinum. Increasing the recovery of such critical raw materials from WEEE is therefore a strategic priority for the UK to mitigate supply chain risks. In addition, the effective recovery of WEEE is critical to achieving the UK's net zero targets. For every tonne of e-waste collected and recycled, 1.44 tonnes of CO2 emissions are avoided. Finally, WEEE that is not properly managed and leaks into the environment can be extremely damaging to nature and human health. A CE for EEE will also eliminate reliance on highly-polluting mining and material extraction industries. Academic contribution - Existing research has addressed problems in the WEEE sector across different life-cycle phases including: material extraction (e.g. technology metals circularity), manufacturing (e.g. increasing post-consumer plastic in WEEE), distribution (e.g. circular business models), use (e.g. emotional durability, repair), and, end of life (e.g. novel recycling technologies). However, a holistic perspective is currently lacking, which is needed to transition to a fully CE for EEE. This fellowship will address these limitations and build on an established body of research to develop novel solutions for a low-carbon, CE for EEE in the UK. It is academically excellent in that it will: (1) generate scientific knowledge and data on the WEEE system in the UK, which includes material flow analysis and data on related carbon emissions. This data can be used to inform decision-making, policy and research; (2) develop novel (technology-enabled) solutions for a CE for EEE in the UK. These solutions can be replicated in other contexts via circular product design and circular business model frameworks; (3) establish an innovative whole systems design methodological approach, which can be applied to study other material streams (e.g. plastics, textiles), to enable a low-carbon, resource-efficient CE.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b4f3e0e5671484ec3fc4ebc0fed45147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b4f3e0e5671484ec3fc4ebc0fed45147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2028Partners:REPIC Ltd, GOOD THINGS FOUNDATION, TechUK, Comply Direct, University of Oxford +19 partnersREPIC Ltd,GOOD THINGS FOUNDATION,TechUK,Comply Direct,University of Oxford,Topolytics,PragmatIC (United Kingdom),Giraffe Innovation Ltd,British Telecommunications plc,RECOUP Ltd,Roberts Radio Ltd,n2s,London Borough of Hammersmith & Fulham,Beko Plc,Environcom England Ltd,Material Focus,Green Alliance,Currys Group Limited,Dsposal,The Restart Project,ReLondon,AMDEA,Biffa plc,S2S LtdFunder: UK Research and Innovation Project Code: MR/X036081/2Vision - The fellowship seeks to radically transform the linear Waste Electrical and Electronic Equipment (WEEE) system to develop a low-carbon, Circular Economy (CE) for Electrical and Electronic Equipment (EEE) in the UK. This fellowship incorporates a programme of research that establishes an innovative whole systems design approach to WEEE, integrating systems engineering, engineering design and product-service system design methodologies. The fellowship will to lead the academic work necessary to support a fully CE for EEE in the UK, through effective reduce, reuse, repair, remanufacturing, recycling and recovery, with the aim of making the UK the first country in the world to eliminate WEEE. Rationale and strategic importance - The rapid development of digitalisation has brought disruptive changes to the economy and life, as well as a growth in the consumption of Electrical and Electronic Equipment (EEE). Waste Electrical and Electronic Equipment (WEEE) is now the fastest growing waste stream in the UK and globally. The UK generates up to 24.9kg per head and throws 155,000 tonnes of WEEE in household bins every year. In 2013, the UK set out WEEE Regulations, to encourage safe and responsible collection, recycling and recovery. However, WEEE collection rates show that the UK is failing to meet its targets. Less that 35% of EEE placed on the market is recovered, meaning that the vast majority is sent to landfill, incinerated or illegally exported to other countries at its end of life. Developing a Circular Economy (CE) for EEE is expected to result in widespread economic, environmental and societal benefits for the UK. The value of precious metals found within UK's unrecovered WEEE is over £370 million annually. WEEE also includes many critical raw materials (e.g. magnesium, cobalt and tungsten) which are of high supply chain risk and importance to the UK. For example, China provides 98% of the EU's supply of rare earth elements, and South Africa provides 71% of the EU's platinum. Increasing the recovery of such critical raw materials from WEEE is therefore a strategic priority for the UK to mitigate supply chain risks. In addition, the effective recovery of WEEE is critical to achieving the UK's net zero targets. For every tonne of e-waste collected and recycled, 1.44 tonnes of CO2 emissions are avoided. Finally, WEEE that is not properly managed and leaks into the environment can be extremely damaging to nature and human health. A CE for EEE will also eliminate reliance on highly-polluting mining and material extraction industries. Academic contribution - Existing research has addressed problems in the WEEE sector across different life-cycle phases including: material extraction (e.g. technology metals circularity), manufacturing (e.g. increasing post-consumer plastic in WEEE), distribution (e.g. circular business models), use (e.g. emotional durability, repair), and, end of life (e.g. novel recycling technologies). However, a holistic perspective is currently lacking, which is needed to transition to a fully CE for EEE. This fellowship will address these limitations and build on an established body of research to develop novel solutions for a low-carbon, CE for EEE in the UK. It is academically excellent in that it will: (1) generate scientific knowledge and data on the WEEE system in the UK, which includes material flow analysis and data on related carbon emissions. This data can be used to inform decision-making, policy and research; (2) develop novel (technology-enabled) solutions for a CE for EEE in the UK. These solutions can be replicated in other contexts via circular product design and circular business model frameworks; (3) establish an innovative whole systems design methodological approach, which can be applied to study other material streams (e.g. plastics, textiles), to enable a low-carbon, resource-efficient CE.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::788fba7c5705750cc490ceaef1f2a9bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::788fba7c5705750cc490ceaef1f2a9bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2027Partners:RAFC, Hammersmith Community Gardens Assoc., Sport England, DuPont (United Kingdom), Smart Design +45 partnersRAFC,Hammersmith Community Gardens Assoc.,Sport England,DuPont (United Kingdom),Smart Design,Glasgow School of Art,Local Works Studio,Priestman Goode,Dark Matter Laboratories,Woodmeadow Trust,Wildlife Trusts,Local Trust,AzuKo,Woodmeadow Trust,Slow Ways,Open Data Institute,Abierto by Cuartielles,Abierto by Cuartielles,Crafts Council,Hammersmith Community Gardens Assoc.,Slow Ways,Sport England,British Science Association,British Science Association,The Restart Project,AzuKo,Local Works Studio,ODI,University of Brighton,DuPont (UK) Ltd,Field Ready (UK),RSWT,RSA (Royal Society for Arts),The Royal Society of Arts (RSA),DuPont (UK) Ltd,University of Brighton,The Restart Project,Priestman Goode,GSA,Dark Matter Laboratories,Royal College of Art,Design Council,Crafts Council,OpenStructures,Field Ready (UK),Smart Design,Design Council,London Borough of Hammersmith & Fulham,OpenStructures,Local TrustFunder: UK Research and Innovation Project Code: EP/W020610/1Funder Contribution: 2,652,960 GBPTo realise the transformational impact of digital technologies on aspects of community life, cultural experiences, future society, and the economy, the RCA proposes to host a DE Network+ focused on digital interventions that would create 'the conditions to make change' towards a sustainable post-industrial society - where the 'product' is the experience, where experiences promote human wellbeing and personal resilience, where the digital interventions are sustainable and promote societal resilience. To achieve a sustainable society, citizens require agency to control the impact they have on the natural environment. Therefore, an Ecological Citizens (EC) Network+ sustainable digital society would use digital technology to: Decouple the use of materials resources from economic development; add value to products through experiences and services; give citizens agency to take care of their environment (relating to waste reduction and reuse, energy generation); give citizens agency to design their own experiences involving products, which promote wellbeing, learning, self-advancement; enable experiences that empower citizens to do, to make, to repair, to learn, to create, to connect, to communicate, to interact, to understand, to share, to enjoy. This Network+ foresees the next move in technological interventions is in creating and implementing "the conditions to make change", i.e. the experiences and interactions, and digitally networked societal actors that enable sustainable transitions for societies and communities. To enact this vision, this proposal focuses on a model of 'distributed everything' - knowledge and know-how, design, materials flows, fabrication and hacking, energy generation - as the fundamental societal transformations that are needed to achieve sustainability require a re-examination of how knowledge is produced and used. Co-production of research is a key mechanism for improving the knowledge required for the fundamental societal transformations needed to achieve sustainability [1], and is central to the approach of the EC Network+. With leading partners, we will inform a truly sustainable 'digital society', built within communities, ensuring legacies through ambassadors, and setting agendas for future transdisciplinary research teams. The EC Network+ will provide a scaffolding to spawn new projects about sustainability at a range of scales (Village, Town, City). This collaborative trans-disciplinary approach is essential for tackling our unprecedented environmental challenges. The network will be built through activities including pump priming, collaborative residentials, learning webinars, strategic roundtables, media and communications, reports, podcasts, and a micro funding scheme. The academic consortium covers the core areas of computer science, sustainable engineering, human-centred design and citizen science. Led by the Royal College of Art (RCA), this proposal builds on Dr Phillips' My Naturewatch, a DIY wildlife camera project that engaged 3 million+ people with UK based wildlife, the circular economy work of the RCA's Materials Science Centre (Prof Baurley), the sustainable engineering and physical computing expertise of the Faculty of Arts, Science and Technology at Wrexham Glyndwr University (Prof Shepley), and expertise in citizen science and policy of the Stockholm Environment Institute at The University of York (Dr West).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f2916138963eb7fb263246d3612e2a09&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f2916138963eb7fb263246d3612e2a09&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu