Powered by OpenAIRE graph
Found an issue? Give us feedback

The Faraday Institution

The Faraday Institution

11 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/S003053/1
    Funder Contribution: 133,830,000 GBP

    Summary The battery is the most important component of electric vehicles, determining performance, range, vehicle packaging, cost and vehicle lifetime. The automotive industry is a UK success story, employing 814,000 people and turning over £77.5bn per year. The UK is home to Europe's largest automotive battery and EV manufacturer. Our automotive industry is committed to the transition from the internal combustion engine to electric vehicles, preserving and expanding jobs and prosperity. The UK will not succeed if it has to rely on Asian or US supply chains for batteries. It will not succeed by simply catching up with today's lithium batteries. We must leapfrog current technology by carrying out more effectively and at scale basic research in batteries and then translating it more seamlessly into innovation and manufacture. This is the ambition of the Faraday Challenge, announced and funded by government, with its three elements: the Faraday Institution (research), Innovate UK (development) and the Advanced Propulsion Centre (industrialisation). The Faraday Institution, in particular, must invest in the UK science and engineering base so that it drives innovation, delivering leading edge battery technology for Britain. We propose to establish the Faraday Institute headquarters (FIHQ) as an independent organization, based at Harwell, the centre of UK science, and with a satellite office at the National Battery Manufacturing Development Facility once completed. It will not belong to any University or group of universities, nor be aligned with particular companies. It will be a UK resource. The FIHQ will be governed by an independent board drawn from academia, industry and independents. It will contain an Expert Panel bringing together in one organisation the UK knowledge base in batteries. The Expert Panel will translate industrial needs for better batteries into specific research challenges and scope calls for proposals from the University sector to carry out research to meet these challenges. It will support intellectual leadership to the Research Projects within the universities, review the projects, advise the board on allocation and reallocation of resources and stop/start of projects. Dedicated personnel will work to ensure research with the greatest scope for exploitation is transferred to innovation and ultimately manufacture. Intellectual property will be owned by the universities but pooled, forming a portfolio of battery IP with a value greater than the sum of its parts. The headquarters will run a training programme. This will include are PhD cluster with the students placed in the universities alongside the FI Research Projects but also with a strong cohort ethos across the Faraday institution. Training for industry and government will be a strong element of the FIHQ activities. . By carrying out strategic research in batteries as a nationally managed portfolio and with greater scale and focus, we will not only enhance the quality and capacity of UK battery research, but also establish the UK as the go to place for leading battery technology. By doing so we will supporting the future UK manufacturing industry, jobs and prosperity.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S514901/1
    Funder Contribution: 5,386,050 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W029235/1
    Funder Contribution: 383,920 GBP

    Breakthroughs in battery technologies are critically needed to enable the widespread adoption of electric vehicles and the grid-scale storage of renewable energy. Solid-state batteries using a lithium (Li) metal anode are rapidly emerging and promise greater range and charging speeds, as well as improved safety. However, dendrite formation almost universally compromises such cells, and they quickly fail under realistic operating conditions. Only inorganic glassy solid electrolyes (SEs) have shown the exceptional ability to "template" stable Li plating/stripping at relevant rates. However, these SEs remain underexplored as they require high-cost, low-throughput vacuum deposition techniques that are incompatible with large-scale battery production. The aim of this research proposal is to engineer a new family of scalable "templating layers" to enable high-rate solid-state batteries. Taking inspiration from vacuum-deposited SEs -- namely the homogeneous, non-crystalline (glass) structure, electrically insulating nature and very flat morphology of the SE used -- we will use low temperature, solution-based techniques that can realise these key attributes and be easily scaled-up to industrially relevant levels. A major challenge in engineering glassy materials stems from their inherent disorder, meaning the critical relationships between atomic structure, electrochemical properties and processing usually remain elusive. A suite of advanced characterisation methods, including X-ray scattering, thermal desorption spectroscopy and operando imaging, will uncover new design rules that span materials to devices. The outputs of this study will be invaluable for the study of disordered functional coatings and have wide impact in energy storage, especially to related battery chemistries, microelectronics and sensing applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z533439/1
    Funder Contribution: 2,093,150 GBP

    The Digital Innovation and Circular Economy (DICE) Network+ aims to drive a transformative shift in the sustainability and circularity of digital and communication technologies. Our vision leverages the digital revolution to foster a circular economy across sectors and value chains, adopting a "network of networks" approach for interdisciplinary collaboration, research, and technological innovation. DICE focuses on overcoming challenges such as the lack of circular economy principles in digital technology design and manufacture, and the poor understanding and coordination of digital advancements in supporting the transition towards a UK circular economy. Our network comprises 11 investigators, from engineering, materials science and social sciences and a wide range of partners, including universities, industry stakeholders, and public bodies. It aims to benefit stakeholders through the co-creation of innovative solutions, fostering knowledge exchange, supporting projects that promote digitally enabled circular economy adoption and guidance on future policy making and industrial decision making. The approach centres around interdisciplinary collaboration, leveraging our extensive existing networks (over £160m of funding since 2020) for maximum impact, and a structured programme of network engagement under the four pillars of Insight and Evidence, Inclusive Community, Capacity Building and Knowledge Exchange, and Research Impact and Legacy. DICE's activities include mapping exercises, webinars, annual showcases, co-creation workshops, knowledge exchange placements, feasibility studies, and demonstrator projects, culminating in the development of a 10-year vision and roadmap towards a digitally enabled CE to guide future policy making, industrial decision making, investment and technological development.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y035569/1
    Funder Contribution: 8,415,880 GBP

    Our CDT in Inorganic Materials for Advanced Manufacturing (IMAT) will provide the knowledge, training and innovation in Inorganic Chemistry and Materials Science needed to power large-scale, high-growth, current and future manufacturing industries. Our cohort-centred programme will build the skills needed to understand, transform and discover better products and materials, and to tackle the practical challenges of manufacturing, application and recycling. IMAT CDT addresses the 'Meeting a user need' CDT focus area, while also addressing 3 EPSRC strategic priorities: 'Physical Sciences Powerhouse', 'Engineering Net Zero' and 'Quantum Technologies'. 'Inorganics' are essential to many industries, from fuel cells to electronics, from batteries to catalysts, from solar cells to medical imaging. These materials are made by technically skilful chemical transformations of elements from across the breadth of the Periodic Table: success is only achievable via in-depth understanding of their properties and dynamic behaviour, requiring systems-thinking across the boundaries of Chemistry and Materials Science. The sector is characterized by an unusually high demand for high-level (MSc/PhD) qualified employees. Moreover, wide-ranging synergies in manufacturing challenges for 'inorganics' mean significant added value is attached to interdisciplinary training in this area. For example, understanding ionic/electronic conductivity is relevant to thermo-electric materials, photo-voltaics, batteries and quantum technologies; replacing heavy metals with earth-abundant alternatives is relevant to chemical manufacturing from plastics to fragrances to speciality chemicals; and methods to manufacture starting from 'natural molecules' like water, oxygen, nitrogen and CO2 will impact nearly every sector of the chemical industry. IMAT will train graduates to navigate interconnected supply chains and meet industry technology/sustainability demands. To invent and propel future industries, graduates must have a clear understanding of scientific fundamentals and be able to quickly apply them to difficult, fast-changing challenges to ensure the UK's leadership in high-tech, high-growth industries. A wide breadth of technical competence is essential, given the sector dominance of small enterprises employing <50 people. The 'inorganic' sector must also meet challenges associated with resource sustainability, manufacturing net zero, pollution minimisation and recycling; our cohorts will be trained to think broadly, with awareness of environmental, societal, legal and economic factors. Our creative and highly skilled graduates will transform sectors as diverse as energy generation, storage, electronics, construction materials, consumer goods, sensing/detection and healthcare. IMAT builds upon the successful EPSRC 'inorganic synthesis' CDT (OxICFM) and (based on extensive end-user/partner feedback) expands its training portfolio to include materials science, physics, engineering and other areas needed to equip graduates to tackle advanced materials challenges. It addresses local, national and international skills gaps identified by our partners, who include companies spanning a wide range of business sizes/sectors, together with local enterprise partnerships and manufacturing catapults. IMAT offers a unique set of training goals in 'inorganic' chemistry and materials - a key discipline encompassing everything made which is not an organic molecule: from salts to composites, from acids/bases to ceramics, from organometallics to (bio)catalysts, from soft-matter to the toughest materials known, and from semi-conductors to super-conductors. A unifying training spanning this breadth is made possible through the strength of expertise across Oxford Chemistry and Materials, and our national partner network. Our goal is to empower future graduates by equipping them with this critical knowledge ready to apply it to new manufacturing sectors.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.