Powered by OpenAIRE graph
Found an issue? Give us feedback

Max-Planck-Gymnasium

Country: Germany

Max-Planck-Gymnasium

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
195 Projects, page 1 of 39
  • Funder: UK Research and Innovation Project Code: EP/N032853/1
    Funder Contribution: 90,804 GBP

    I propose a new approach to supplying technologies for the last-mile global communication networks. High-speed data links are central to an ever-more integrated digital economy where, every day, more and more data is shared on our already over-stretched communications networks. A key challenge is the development of new high-bandwidth, secure communication networks, particularly through the internet. The online multimedia services we use on a daily basis are huge users of network bandwidth. With the number of multimedia users in the UK increasing on a monthly basis, the result is a huge drain on the available network bandwidth. Even in standard definition, watching our favourite TV show uses around 1GB of data per hour (and 3GB per hour for high definition). Beyond multimedia, as cloud-based storage and computing becoming the norm establishing high-bandwidth communication networks will be vital. Core backbone communication networks are regularly upgraded to deal with these demands, however the last-mile network, which takes our Internet services to homes and offices, is difficult and expensive to upgrade. This difficulty arises from the distributed nature of this portion of the network and solutions for cost effective, and sustainable, upgrades are required to be commercially deployed over the next 5-10 years. This project the aims to develop solutions to implementation of high-speed free-space last-mile networks. Using light beams carrying Orbital Angular Momentum, a single point-to-point link will increase the number of data carrying channels. Using orbital angular momentum in this way is an example of spatial multiplexing. These multiplexing techniques have the potential to offer multiplicative increases in data rates whilst simultaneously increasing the security of the link. A key deliverable will be the development of a last-mile building to building link within our new campus, for the development and testing of prototype novel multiplexing and de-multiplexing technology. Working with Industrial partners Intel and Corning, solutions will be developed in line with their market requirement, allowing near-term commercial uptake. These industry inspired challenges raise some questions about the fundamental nature of long distance propagation of spatial modes. Hence, along with overcoming the technical hurdles this project aims to investigate the effect of turbulence within the free-space propagation of spatially multiplexed beams. In the early stages of this project, studies into the optical aberrations, and modal cross coupling will be carried out in different environmental settings. This vital data will provide a base to design and develop passive, and active approaches to overcoming the limitations imposed by atmospheric turbulence. Further to these challenges, techniques to allow integration into current installed fibre networks will be developed. The proof-of-principle link will allow real life user testing, where standard internet services will be demonstrated over the link, aiming to providing a commercially viable last-mile link design as a key deliverable of the project.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V00784X/1
    Funder Contribution: 14,069,700 GBP

    Public opinion on complex scientific topics can have dramatic effects on industrial sectors (e.g. GM crops, fracking, global warming). In order to realise the industrial and societal benefits of Autonomous Systems, they must be trustworthy by design and default, judged both through objective processes of systematic assurance and certification, and via the more subjective lens of users, industry, and the public. To address this and deliver it across the Trustworthy Autonomous Systems (TAS) programme, the UK Research Hub for TAS (TAS-UK) assembles a team that is world renowned for research in understanding the socially embedded nature of technologies. TASK-UK will establish a collaborative platform for the UK to deliver world-leading best practices for the design, regulation and operation of 'socially beneficial' autonomous systems which are both trustworthy in principle, and trusted in practice by individuals, society and government. TAS-UK will work to bring together those within a broader landscape of TAS research, including the TAS nodes, to deliver the fundamental scientific principles that underpin TAS; it will provide a focal point for market and society-led research into TAS; and provide a visible and open door to engage a broad range of end-users, international collaborators and investors. TAS-UK will do this by delivering three key programmes to deliver the overall TAS programme, including the Research Programme, the Advocacy & Engagement Programme, and the Skills Programme. The core of the Research Programme is to amplify and shape TAS research and innovation in the UK, building on existing programmes and linking with the seven TAS nodes to deliver a coherent programme to ensure coverage of the fundamental research issues. The Advocacy & Engagement Programme will create a set of mechanisms for engagement and co-creation with the public, public sector actors, government, the third sector, and industry to help define best practices, assurance processes, and formulate policy. It will engage in cross-sector industry and partner connection and brokering across nodes. The Skills Programme will create a structured pipeline for future leaders in TAS research and innovation with new training programmes and openly available resources for broader upskilling and reskilling in TAS industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T006544/2
    Funder Contribution: 1,243,070 GBP

    Communication is not only an essential organisation principle for emerging large-scale distributed applications, such as those for e-Commerce, e-Science, e-Healthcare and financial technology (FinTech): it is also an effective way to use computational resources, such as microservices and manycore chips. In this new paradigm, communication and concurrency are the norm in software development rather than a marginal concern, enabling architects and programmers to harness the power of hundreds or even thousands of concurrent processes interacting through *message passing*. However, for this paradigm there is no well-established methodology for software development with safety and security gurantee based on clear and mathematically accurate criteria on its behaviour. This leaves uncertainty on the correctness of the construction of distributed infrastructure. The aim of this fellowship is to establish general and practical foundations for safety enforcement of communication-intensive concurrent and distributed applications, building on a general theory of *multiparty session types*. Communications in a distributed application are commonly organised into multiple structured conversations (*protocols*) where a developer or programmer wishes to enforce *observabilities* of system behaviours to follow a safety and security criteria given by a protocol. Here *observability* of systems behaviours means a visible sequence of message exchanges with more complex information such as dependency of data, secure information, cost and timing of communications. In the multiparty session types, an end-point system properly carries out its responsibility, so that observable systems behaviours as a whole obey an agreed-upon protocol. Multiparty session types articulate the basic dynamics in a respective computing paradigm, thus serving as a foundation for modelling, specification, verification, systematic testing and certification, enhanced with other methods such as monitoring and logical assertions. This fellowship aims to fulfil this potential of multiparty session types as types for communication by carrying out experiments. To achieve this goal, the following technical objectives have been identified: 1. The establishment of a uniform type theory for multiparty session types capturing a full range of application-level protocols based on behavioural theory and game semantics, as a foundation of the whole methodology. 2. The establishment of a dependent and refinement type theory of specifications and verifications; and of a scalable algorithm to verify safety and security properties based on automata theory. 3. The development and release of an open-source toolchain, based on (1,2), combined with Application Programming Interface (API) and with industry tools. 4. A theoretically well-founded architecture which can efficiently monitor, trace, log and enforce correct observational behaviour against specifications written in (3). 5. Experiments through collaboration with academic and industry partners, realising formal safety and security assurance against advanced protocols for real-world applications, including multi robotics/UAVs, financial and healthcare systems. Throughout the research programme, an active and extensive dialogue between theories (1,2) and practice (3,4,5) will be the key enabler for reaching the goals of the fellowship, ultimately establishing cross-disciplinary and co-created ICT research. The project also links assurance methodologies based on session types to the standardisation for Cloud Computing (Cloud Native Computing Foundation) and to the public regulatory requirements for the documentation of financial and e-Healthcare protocols, meeting the goals of People at the Heart of ICT.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M007928/2
    Funder Contribution: 532,741 GBP

    The understanding of non-equilibrium quantum systems is one of the greatest challenges of modern science, as recognised by the EPSRC Grand Challenges Programme. Its development will have profound effects across different research areas including quantum computation and information, quantum optics, and biology. Theoretical understanding of these systems will form the basis for future development of new generation fast and energy efficient microchips and instruments for precise measurements. The occurrence of non-equilibrium behaviour is very common in Nature. The simplest example of this can be found when two objects with different temperatures come into contact. Other systems can show various levels of complexity from the physical process that leads to emission of a laser beam to the ultimate case of living organisms. The common characteristic property of these systems is the absence of uniform thermodynamic quantities such as temperature. Some of the state-of-the-art experiments in this field are made with semiconductor nano-structures in high magnetic fields and very low temperatures. In these systems electrons move in a coherent way similar to photons in a laser beam. Remarkably, because of strong interactions, the electrons in these systems form new strongly-correlated emergent states which exhibit quasi-particles with only a fraction of the electron charge. Similar quasi-particles also occur in quantum magnetic materials in the so-called spin liquid states. In the future it is hoped that these particles will be used as fundamental building blocks of topological quantum computers. The problem of quantum motion of a large number of quasi-particles is in the class of non-equilibrium quantum problems, whose study constitutes one of the main aims of this research programme. Interestingly, many of these systems show non-equilibrium steady states. Take a piece of metal and connect it on opposite sides to a heater and a refrigerator, a configuration which will result in a steady heat flow. A similar situation occurs in a system of interacting electrons in a quantum wire connected to a battery. The important differences with the former arise from the fact that the motion of particles in the wire obeys the laws of quantum mechanics, which lead to unusual quantum states. Recently it became possible to study these states in experiments, which resulted in a number of unexpected observations e.g. PRL 96, 016804 (2006); PRL 105, 056803 (2010). Next generation experiments will build quantum devices that use and explore the physics of non-equilibrium states based on the new theoretical and experimental insights. The project is aimed at theoretical understanding of quantum systems which are driven far from equilibrium by, for example, applied voltage or fast switching of external fields. In this setting many physical systems with examples ranging from semiconductor nano-structures and superconductors to quantum magnets and ultra-cold atomic gases show remarkable emergent behaviour (see for example PRL 105, 056803 (2010), arXiv:1308.4336, Science 331, 189 (2011), Nature Physics 8, 325 (2012) etc). This comes as a result of intricate quantum entanglement which occurs in these systems due to motion of interacting particles under non-equilibrium conditions. The properties of these systems cannot be explained using standard theoretical framework, and it is the one of the central tasks of this project to develop this theoretical description.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/T00732X/1
    Funder Contribution: 648,076 GBP

    The proposal presented here is important for quantifying how interfacial chemistry in the atmosphere is important in the assessment of modern climate change. It relies on three aspects of atmospheric science 1) Atmospheric aerosols are tiny solid or liquid particles suspended in air. They arise from human activity (e.g. burning of fossil fuels) and naturally (e.g. breaking ocean waves) and can exist in the atmosphere for minutes to days. These aerosol are a large source of uncertainty when assessing man-made contributions to climate change as they strongly influence (I) the amount of light reflected back to space (potentially cooling the planet) and (II) the formation of clouds, and how much sunlight they reflect back to space (again, potentially cooling the planet). 2) Some of these aerosol have thin films or coatings of organic material. As the size of these aerosol are similar to the wavelength of sunlight a thin coating can significantly alter their ability to scatter and 'reflect' sunlight and their potential to form clouds. 3) The atmosphere effectively acts as a low temperature, dilute fuel, combustion system oxidizing chemicals released from the Earth's surface. The rate at which chemicals released from the Earth's surface can be removed by oxidation is important in understanding the atmosphere's self-cleansing mechanism. Previously *proxies* of thin films on atmospheric aerosol have been shown to potentially alter the light scattering and cloud forming ability of clouds. These proxies have been chosen from a chemical catalogue and do not represent the mixture and variety found in the atmosphere. We will use *real* material extracted from different locations to characterize the thin films formed on real atmospheric aerosol, determine their film thicknesses, light scattering ability and their chemical reactivity in the atmosphere. Our own preliminary work demonstrates that laboratory proxy thin films are not representative of the real atmosphere. The film thicknesses are critical to the calculation of their light scattering ability which in turn is critical to calculation of the proportion of sunlight scattered back to space. The chemical reactivity is important in determining the lifetime of the film, because as the film reacts the optical properties of the particle will change significantly. If the film lifetime is longer than a typical aerosol lifetime then it can be simply included into atmospheric models, but if the film lifetime is much shorter then it may be ignored. However preliminary data suggests it is has a similar lifetime meaning the *changing* light scattering properties of a coated particle will need to be modelled. The project represents the first comprehensive study of atmospheric thin film oxidation and light scattering with real atmospheric matter from the atmosphere. The combined experimental and modelling approach will allow the demonstration of (I) core-shell (thin film behavior) from atmospheric samples, (II) calculation of their optical properties and change in radiative balance at the top of the atmosphere., (III) measurement of atmospheric oxidation rates of the film and inclusion in Co-I led complex aerosol kinetic modelling of complex mixture aerosol. The proposal will also continue to develop two emergent exciting techniques for atmospheric science: Laser trapping with Mie spectroscopy and neutron scattering. The ability of these technique to study films ~10nm thick in real time, with the correct morphology and with unprecedented precision is phenomenal. The proposal will also be an excellent training vehicle for two PDRAS in soft-matter, facility, and atmospheric experimental science with real world modelling of atmospheric outcomes. The data and model systems from this proposed work will be ready for including global climate models. The letters os support demonstrate that ends users for some off data with the Met. office(UK) and MPIC (Germany).

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.