Powered by OpenAIRE graph
Found an issue? Give us feedback

Technical University of Denmark

Technical University of Denmark

45 Projects, page 1 of 9
  • Funder: UK Research and Innovation Project Code: ST/M007804/1
    Funder Contribution: 210,439 GBP

    Using adaptive optics, first applied in astronomy and then (under STFC funding) successfully adapted for use in optical microscopy, we aim to to produce micrometric resolution ultrasound imaging. Specifically, the goal is to track microbubble contrast agents in circulation thus generating detailed images of the vascular network. This is to meet the unmet clinical need for microvascular assessment in common diseases associated with abnormal microvascular networks such as cancer, ischaemia, inflammatory disease, transplant rejection and tissue regeneration. An example is the ongoing need for rapid and low-risk biomarkers of treatment outcome and its prediction in cancer. The current response evaluation criteria for solid tumours (RECIST) utilises Computerised Tomography (CT) to assess tumour volume changes which typically is done three (3) months after the treatment. Such indirect assessment significantly limits early personalisation based on treatment response and may contribute to suboptimal morbidity and mortality rates. Every year, over 250,000 people in England are diagnosed with cancer, and around 130,000 do not survived as a result of the disease. The annual NHS related costs are in the order of £4.5 billion, and the cost to society as a whole about £18.3 billion. Although these statistics are improving the UK Department of Health aims to achieve the average cancer survival rate on par with the rest of the European Union in an attempt to save an extra 5,000 lives every year. Our proposed product will be used to provide additional benefits to the care of each patient that can be used for: -Early diagnosis with the potential of becoming a screening test, -Early and fast disease monitoring that enables early patient stratification. Ultrasound provides real time images at low cost and low risk to patients, which is very attractive for repeated imaging of tissues. As recommended by the Department of Health we will assess our technique in the measurement of an established biomarker such as microvascular density (which is an established biomarker for many cancers), and consider the generation of new biomarkers such as capillary blood velocity, vessel structure and tortuosity that may provide a robust differentiation of vascular related disease. This is a significant improvement to all current imaging modalities that are macroscopic. There is a real opportunity to establish CEUS as the leading modality for perfusion assessment by translating existing technology that provides super-resolution images of point sources in optics (microscopy, astronomy), mm-wave and radar. This proposal will deploy the scatter from single microbubbles as a priori knowledge for implementing an available maximum sharpness likelihood technique similar to that used in optical microscopy. We will implement existing algorithms in an ultrasound field simulation environment to define the experiments that will be used to test these algorithms in vitro and finalize the design of the beamforming method. By utilizing existing image analysis algorithms used for particle tracking we will generate the visualization of in vitro microvascular phantoms. A prototype tool that can be implemented in existing ultrasound imaging product provided by BK Medical, our industrial partner, will be delivered. Finally, we will use existing commercial equipment to collect cancer patient data in order to identify a patient group with promising image data (in comparison with a gold standard). This will provide a focal point in a follow up project for the commercialization of the enhanced imaging capability of our prototype.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H009612/1
    Funder Contribution: 5,814,410 GBP

    Reducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T022795/1
    Funder Contribution: 856,108 GBP

    Project aim This project proposes a solution for integrated supply of zero carbon heating and cooling using near ground temperature networks that enable buildings to use heat pumps and cooling machines to exchange thermal energy with the network and meet their heating and cooling demand. When a building demands cooling, it rejects its excess heat to the network that can balance the heating demand of another buildings. Therefore, in this project we refer to such networks as 'balanced heating and cooling network' (BHCN). Key contributions of this research are: (i) To investigate the optimal design and operation of BHCN using a multi-objective optimisation approach to balance costs of the system and the value it can provide to the whole power grid via providing flexibility services. In particular, we will examine inter-seasonal heat storage, and also the feasibility of using NH3 and CO2 (as alternatives to water) for heat transport mediums in BHCNs. (ii) To design a local heat market that enables peer-to-peer (P2P) heat sharing to maximise the use of zero carbon sources of thermal energy on-site, and (iii) To identify technical, regulatory and policy barriers against implementing BHCNs (i.e. managing the transition from status quo to BHCN). This research will also build significant UK research capacity in zero carbon and ambient temperature heat networks. Background The need for decarbonising heat supply: According to the 2017 Clean Growth Strategy, the UK Government believes 'decarbonising heat is our most difficult policy and technology challenge to meet our carbon targets'. Progress on energy efficiency and low carbon heat provision remains below expected levels and natural gas infrastructure continues to be expanded which poses risk to achieving the recently set net zero goal for 2050. The role of heat networks: The Clean Growth Strategy suggests 17% of domestic heat and between 17% and 24% of service sector heat could be provided through heat networks in 2050. The Committee on Climate Change suggests around 5 million homes could use district heat by 2050 based on techno-economic modelling. However, heat network growth is slow despite requiring around a tenfold increase from the current level by 2050. The growing demand for cooling: Coinciding with the crucial need for supplying low carbon heat, the demand for cooling is also increasing in the UK (and globally) due to population increase and climate change impacts which are leading to more frequent heatwaves and temperature rises. According to BRE, up to 10% of all UK electricity use is for air conditioning and cooling. Because of this established trend toward increased use of cooling, the proportion of UK electricity used for cooling is expected to rise further. A potential solution for zero carbon supply of heating and cooling: Balanced Heating and Cooling Networks (BHCN), are a form of district heating system which circulates water at near ground temperature to buildings allow them to use their own heat pumps to extract heat for heating, or to export heat to the network when cooling is required. BHCNs address many of the drawbacks of conventional heat networks through operating at reduced temperature and therefore minimising heat losses and reduce the cost of highly insulated pipes. They also open up opportunities for integrating various sources of renewable heat into the networks. The circuit can also be extended to new buildings at limited cost. Work Programme WP1 - Case study definition WP 2 - Assessing renewable heat sources and inter-seasonal storage WP 3 - Techno-economic appraisal of BHCN WP 4 - Development of a methods and tools for Peer-to-Peer (P2P) heat sharing WP 5 - Managing implementation and transition to BHCNs

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y001141/1
    Funder Contribution: 165,517 GBP

    Metals are essential in our daily lives and have a finite supply. For example, smartphones are pocket-sized vaults of critical metals, as they contain several rare earth elements (REE) that produce the colours in the liquid crystal display, and others give the screen its glow. The magnets in the speaker, microphone and vibration units also contain REE. The current CO2 emissions and environmental impact of mining those metals are untenable. The supply chain of these metals is also dependent on geopolitical conditions, and currently, China is the world's largest producer. To decrease our reliance on critical metal mining, we need new efficient, low-cost, low-energy and environmentally friendly solutions to recover metals from waste. This project will start a new collaboration between UK and Denmark, joining teams that complement each other in their expertise. Exchange visits and a workshop will facilitate this collaborative research that aims to develop an environmentally friendly method to recover critical metals from wastes. We will be using metal-tolerant bacteria isolated from different environments and exploiting their capability to solubilise metals in a reactor with a low-level electric current. This new approach will combine two different technologies - bioleaching and electrodialysis. Bioleaching uses acid-producing bacteria to solubilise metals from various ores and wastes. However, the process can be very slow, and further separation processes are needed, so it will be combined with electrodialysis. Electrodialysis uses a low-level electric current to transport ions through a membrane. The metals that bacteria solubilise from waste can be transported and separated by the electric current and more easily recovered. This project will demonstrate how we can combine these technologies, providing a direct route for scaling up and applying to different wastes, contributing to more efficient and sustainable resource use, recovering value from waste and minimising pollution.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I036141/1
    Funder Contribution: 1,278,530 GBP

    Nuclear Magnetic Resonance (NMR) is a technique which uses the fact that the nuclei of many atoms act as tiny radiotransmitters, emitting radio signals at precisely-defined frequencies, which can be detected by a carefully-tuned detector. The frequencies and strengths of the signals depend on the magnetic field in which the sample is placed: the higher field, the higher the frequency, and the stronger the signals. In an NMR experiment, the nuclei are first magnetized by placing a sample in a strong magnetic field for some time. A sequence of radiofrequency pulses is then applied to the sample, which then emits radiowaves which can be detected in the radio receiver. The pattern of emitted waves depends on what the nuclei experienced during the pulse sequence. One useful feature is that the nuclei can "remember" what happened to them some seconds before the radiosignals are emitted. This "memory" property allows one to track movements such as chemical reactions, the random displacement of molecules, and the flow of blood and other fluids by NMR. Until recently, the "memory time" of the atomic nuclei was thought to be a fixed property of the substance under study, which could not be changed significantly by the way one does the experiment. However, our group showed in 2004 that for some substances the memory time could be extended by a factor of 10 or more by using special quantum states which are non-magnetic, called singlet states. At roughly the same time, a group of researchers in Sweden, including our project partner Jan-Henrik Ardenkjaer-Larsen, developed a revolutionary method for increasing the amplitude of NMR signals by a factor of ten thousand or even more. This method is called dissolution-DNP and an instrument to implement this is built and marketed by the British company Oxford Instruments. However a drawback of the technique is that the greatly enhanced polarization (called hyperpolarization) dies out quickly. In this project we will combine these two developments by using dissolution-DNP to generate hyperpolarization and then convert the hyperpolarized substances into singlet states, which have a much longer lifetime. We will synthesize molecules which have the right properties to sustain the long-lived singlet states and perform hyperpolarized NMR imaging experiments, mapping out slow processes such as diffusion and flow. We also expect to develop methods that allow one to construct a map of the oxygen content of fluids such as blood. In this way we will develop and demonstrate a range of new magnetic resonance methods with a wide range of applications in medicine, chemical engineering and materials science.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.