Powered by OpenAIRE graph
Found an issue? Give us feedback

Born GmbH

BORN GMBH KNITWEAR FOR FASHION & ENGINEERING
Country: Germany
2 Projects, page 1 of 1
  • Funder: European Commission Project Code: 101120832
    Overall Budget: 4,499,330 EURFunder Contribution: 4,499,330 EUR

    GRAPHERGIA aims is to develop a new science-based, holistic approach, implementing new advances to achieve one-step, laser-assisted synthesis, processing, functionalization and simultaneous integration of graphene-based materials and graphene nanohybrids, directly into relevant energy harvesting/storage devices. This will lead to a scalable, cost-effective and climate-neutral production of (i) e-textiles with the specific functions of wearable power supplying and self-powered structural sensors and (ii) next generation electrodes for Li-ion batteries. Based on current TRL 3-4 activities, the consortium explores novel ideas for 2D materials engineering and integration at TRL 5 or higher, establishing versatile pilot-scale-based approaches for these two types of applications. Configurations of TENG-based e-textiles will be prepared to fabricate flexible architectures, designed to sustainably convert energy from the environment to electricity. Laser-scribed solid-state micro-flexible supercapacitors, will be coupled to TENGs, via innovative power management circuits, acting as energy reservoirs to provide on-demand batteryless charging to wearable devices and sensors. All-in-one, self-charging power textiles with integrated electronic systems will provide a human-body-centric technology and interface of the user to the IoT by wireless transmission of sensors’ signals. In parallel, GRAPHERGIA defines a credible “dry electrode” approach to fabricate next generation electrodes for Li-ion batteries aspiring to reach the technical/economic targets of the 2030 European SET-plan. The proposed methodology will be implemented by blending recently devised IPR-protected technologies of consortium partners. To achieve these targets, a combined 2D materials and process-oriented approaches will be adopted, based on low-cost raw materials and inherently scalable fabrication approaches to ensure a cost-effective and climate-neutral production of energy harvesting and storage devices.

    more_vert
  • Funder: European Commission Project Code: 101091997
    Overall Budget: 5,427,120 EURFunder Contribution: 5,427,120 EUR

    EMPHASIS aims to develop a new science-oriented and circular-economy approach, for the design and production of next-generation supercapacitors (SCs) achieving the technical specifications defined in the European SET plan targets for 2030. Three main SC components, i.e. electrodes, current collectors and electrolytes, will be optimized to achieve their best combination resulting in very high energy and power density, cyclability, and charge/discharge ratio, reducing at the same time production cost and environmental footprint in comparison to the extant technologies. Laser-assisted methods will be employed to transform biomass to high mass-density films of graphene and graphene/nanoclusters hybrids, offering a dry method for in-situ electrode fabrication. High-surface-area activated carbons and metal-free current collectors with 3D morphology will be produced starting from new bio-based (cellulose) precursors. Novel, green IL-based recyclable electrolytes operating over a wide temperature and voltage window, will be designed and synthesized by industrially-relevant processes to ensure upscaling. Various concepts of SCs (symmetric, asymmetric, hybrid) will be designed and optimized for two specific end-user applications, flexible SCs for wearable technology (medical clothing) and the automotive industry (fuel cell powered vehicles). In both applications, the custom-designed and implemented SCs target to the replacement of batteries in an effort to eliminate the use of CRMs and unsafe/toxic chemicals. Life-cycle analysis will consider environmental and cost-feasibility impact to ensure innovation in the frame of circular economy. EMPHASIS will establish new value chains with energy storage products, essential to future competitiveness and prosperity of the EU industry. To this direction, the project aspires to develop digital technologies that fulfill the Green Deal objectives for secure raw materials, to pave the way for a twin green and digital transformation.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.