Powered by OpenAIRE graph
Found an issue? Give us feedback

Cementation Skanska

Cementation Skanska

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/N021614/1
    Funder Contribution: 3,163,720 GBP

    Globally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X024849/1
    Funder Contribution: 470,690 GBP

    When a new metro station or a deep basement are to be constructed in a city, a large hole in the ground is needed. The hole needs to be safe to work in and to allow access and very often the chosen solution is to support the sides of the large hole with a braced embedded retaining wall. These are substantial pieces of temporary works of considerable cost. Recent examples are the 230 long by 24 m wide by 23m deep excavation for the new Crossrail station at Paddington in London. An important feature of this form of construction is large props that span between the walls, to hold them up. For those tasked with designing the prop size, location, number and the walls the key issues are prediction of ground movements adjacent to the excavation (which could negatively affect buildings) and propping forces (so that the right props can be used and while guidance exists for designers in some recent publications produced by the UK construction information organisation, CIRIA, coverage of the behaviour at excavation corners as regards both design issues is poor. There is substantial published research on the computational modelling of braced excavations but only in two-dimensions (i.e. s slice through a long wall), some of it validated against field data, however accounting for 3D effects as required for the analysis of corners is rare and insubstantial. Improving our understanding of the behaviour of these corners and how it is affected by soil behaviour, system stiffness, and prop loading will lead to (a) greater economy in propping schemes and (b) more certainty in the prediction of ground movements adjacent to corners, potentially reducing the accommodation works required to prevent damage to adjacent structures. The programme of research proposed here comprises complex computational simulations of the construction of a braced excavation, taking into account differences in geometry, materials and sequences. The problem can only be properly tackled using a 3D model (unlike many other problems in geotechnical engineering) however even today, the computational tools we use struggle to deliver results quickly when we try to model in 3D. So, in this proposal we will be using a clever method where "reduced order models", (ROMs) will be made, using results from a relatively small set of the complex 3D models. A ROM is much easier to use and is generated by manipulation of a limited number of the high fidelity 3D simulations. From these ROMs we will derive results and prepare guidance for engineers designing braced excavations which will enable cheaper and simpler schemes to be used. The researchers on the project come from Durham and Dundee Universities and are supported by a Project Oversight Group comprising key figures from the UK industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V042149/1
    Funder Contribution: 1,520,500 GBP

    Through the 2008 Climate Change act, the UK committed to reduce by 80% its carbon emissions. While great progress has been made so far, data suggests that reductions in emissions have been achieved through switching electricity production to greener, more environmentally friendly sources, such as offshore wind. Clearly, it is inevitable that, to achieve further reductions in carbon emissions, we need to look for improvements elsewhere, such as heating and cooling of buildings, which accounts for 25% of all UK final energy consumption and 15% of carbon emissions. Project SaFEGround aims to provide a template for reducing emissions associated to heating and cooling through the deployment of heat pumps. These are efficient devices capable of extracting heat from a storage medium, e.g. air for air-source heat pumps or the ground for ground-source heat pumps, and this is done with high efficiency, since for each unit of electricity consumed by the system, it is usual to get 3-4 units of heat. Clearly, these are more environmentally-friendly than boilers as they require only electricity, which, as mentioned above, is increasingly being generated from renewable and low-carbon sources. Therefore, SaFEGround will investigate how ground-source heat pumps can be coupled with civil engineering structures to deliver low-carbon heating and cooling in a sustainable, safe and efficient manner. To achieve this, SaFEGround will combine research on material science, heat pump technology, energy geotechnics, building energy systems modelling, whole-system modelling and finance, to demonstrate that ground source energy systems can play an important role in the UK's future low-carbon energy mix in a cost-effective manner.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.