Powered by OpenAIRE graph
Found an issue? Give us feedback

Intelligent Energy

INTELLIGENT ENERGY LIMITED
Country: United Kingdom

Intelligent Energy

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
21 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/K02101X/1
    Funder Contribution: 909,686 GBP

    The UK has a commitment to reduce green house gas emissions by 80% by 2050. To achieve this the UK energy sector has to migrate towards supplying innovative, high quality, highly reliable, low or zero emission energy generation sources. Hydrogen and fuel cells have emerged as potential initiatives that could serve as alternative energy sources. They are currently being engineered for a range of applications including automotive, stationary power, aerospace and consumer electronics. Each application presents its own set of requirements for the fuel cell system including performance, operating range and cost. With the introduction of a new technology into markets, where existing products are highly reliable, requires that this aspect of the system performance must match customer expectations which are demanded for a new product. The area of focus of this research aims to improve the durability and reliability of this new energy source by better system integration and design optimisation, coupled with effective health management to maximise the life of the power source. The outcome is a real time dynamic and adaptive intelligent lifecycle infrastructure with leading edge research in system design for reliability, prognostics and diagnostics, and semantically modeling relationships been the product and the environment for fuel cells, achieved through a multidisciplinary approach, including the areas of mathematics, information science and engineering. The dividends both in design efficiencies and lifecycle management can be achieved placing hydrogen and fuel cell power sources at the forefront of future UK energy provision.

    more_vert
  • Funder: European Commission Project Code: 736290
    Overall Budget: 3,486,960 EURFunder Contribution: 3,486,960 EUR

    The project’s proposition and charter is to advance (MRL4 > MRL6) the critical steps of the PEM fuel cell assembly processes and associated in-line QC & end-of-line test / handover strategies and to demonstrate a route to automated volume process production capability within an automotive best practice context e.g. cycle time optimization and line-balancing, cost reduction and embedded / digitized quality control. The project will include characterization and digital codification of physical attributes of key materials (e.g. GDLs) to establish yield impacting digital cause and effects relationships within the value chain, from raw material supply / conversion / assembly through to in-service data analytics, aligning with evolving Industry 4.0 standards for data gathering / security, and line up-time, productivity monitoring. The expected outcome will be a blueprint for beyond current state automotive PEM fuel cell manufacturing capability in Europe. The project will exploit existing EU fuel cell and manufacturing competences and skill sets to enhance EU employment opportunities and competitiveness while supporting CO2 reduction and emissions reduction targets across the transport low emission vehicle sector with increased security of fuel supply (by utilizing locally produced Hydrogen).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G061424/1
    Funder Contribution: 301,104 GBP

    It is not possible to understand the way that a fuel cell operates without understanding how reactants, products, heat and electrochemical potential varies within that fuel cell. A consequence of this is that in order to obtain the best performance out of a fuel cell we cannot treat it like a simple electrical device with a positive and negative terminal: we need to be able to understand what is happening at different points within that fuel cell. Put simply, the purpose of this project is to develop a new way to image what is happening within an operating fuel cell. That is, to develop a way in which we can see how well the different parts of the fuel cell is operating - whether they are operating well, or starved of reactants, or undergoing damaging processes which will limit the longevity of the system.In this programme we intend to build on previous work at NPL, Imperial and UCL to develop a world-class instrument to allow us to study what is happening within an operating fuel cell. We will utilise a specially instrumented fuel cell which will allow us to monitor several very important parameters in real time. In this way we can monitor how the fuel cell operates under the different extreme conditions imposed on it during both normal and abnormal operating conditions. Examples of such extreme conditions occur when the fuel cell is started up, or shut down or when the fuel cell is pushed to perform at the limits of its performance (as might be expected during an overtaking manoeuvre if the fuel cell were powering a vehicle). Results of this research will be utilised to improve the design of the fuel cell.The hardware will be designed and built at Imperial College, and tested at both Imperial and NPL. A bipolar plate rapid prototyping facility will be built at UCL which will allow us to experiment with different flow-field geometries in order to achieve as even as possible distribution of the parameters being measured with the fuel cell mapping hardware. Modelling will be performed at UCL in order to test improvements to the performance of the cells brought about by using different flow-field architecturesWe have engaged with two major UK fuel cell companies, Johnson Matthey and Intelligent Energy, who are interested in utilising the instrumentation and results of this work.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G060991/1
    Funder Contribution: 36,467 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: European Commission Project Code: 671465
    Overall Budget: 4,988,450 EURFunder Contribution: 4,961,950 EUR

    The principal aim of the project is to develop an EU-centric supply base for key automotive PEM fuel cell components that achieve high power density and with volume production capability along with embedded quality control as a key focus - to enable the establishment of a mature Automotive PEM fuel cell manufacturing capability in Europe. It will exploit existing EU value adding competencies and skill sets to enhance EU employment opportunities and competitiveness while supporting CO2 reduction and emissions reduction targets across the Transport sector with increased security of fuel supply (by utilising locally produced Hydrogen).

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.