Powered by OpenAIRE graph
Found an issue? Give us feedback

E.ON (United Kingdom)

E.ON (United Kingdom)

42 Projects, page 1 of 9
  • Funder: UK Research and Innovation Project Code: EP/K03619X/1
    Funder Contribution: 955,092 GBP

    25 million rural Indian households do not have access to electricity and the rest of the rural households face 4-5 hours of daily load shedding. In the UK, 17.2% rural households are fuel poor and it takes 10 times longer to restore power supply in rural areas than in the cities. While in India it is the inadequacy of infrastructure, the UK scene is dominated by network operation and control issues. Most of these remote regions have local power resources but mainly intermittent in nature. Running such system in isolation requires storage and thus pushing the overall cost up. On and off grid through hybrid AC/DC micro grid concept is very revolutionary in this context. However, the operation in such mode does not come unchallenged. The technical issues are low inertia because of small synchronous generators and inverter based generation, unbalanced demand, asymmetric network, false tripping of DG during mode transition, excessive harmonic distortion because of power electronics driven customer loads, etc. The challenges represent a major test of the power engineering community. This is because, in order to solve them, experts from different specialities - distribution system operation and control, power electronic converter design and control, energy storage must come together and fuse different enabling technologies for making smart distribution grid truly functional. This consortium, drawing in experts from each of these technical areas, proposes to undertake fundamental technical research to fuse these technologies to make a community grid a reality. The overarching aim of this proposal is to invent appropriate, cost effective, scalable, secure and reliable local energy system. The innovations include cutting edge converter topology, control design, practical application of ground breaking voltage and frequency control, innovation in thermal storage in demand management and the output of DG intermittency and advanced system operation tools. Four prototype laboratory based systems will be designed tested and validated to reflect four different geographical and climate situations influencing the resource availability and consumption trends. In the short to medium term this project will establish and strengthen the collaborations between the leading UK and Indian universities engaged in research in power electronics, renewable energy, power distribution operation and control and energy storage. This will promote mutual understanding of the challenge facing the power system practices in order to meet the growing energy demand through increasingly intermittent local energy resources in the years ahead. Strong collaboration between the scientists in two countries will allow rigorous evaluation of challenges, technology and approach to address the problem of reliably operating power distribution systems of both countries. This will lead to novel and scientific understanding validated on different contexts and systems, which could not be possibly achieved by either side working in isolation. The research outcome will be well publicized in journal and conferences. While it is clear that the uptake of this research primarily benefit the community living in the remote region, the other inevitable impact is employment opportunity for local people, business opportunity for various companies such as EoN, GE Energy, Siemens, ALSTOM GRID, ABB in the UK and in India, to name a few. In a time when there is a universal crisis for power engineers, the project will deliver trained researchers with broader expertise of working in this multinational collaborative project. Many of the investigators on both the UK and Indian side already enjoy healthy collaborative working relationships with industrial and utility partners primarily within their own countries. This programme will clearly move the research frontier and will drive technology development through such true multinational research collaboration.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/M008444/1
    Funder Contribution: 39,433 GBP

    WINSPEC will study the feasibility and specification of a marine operated, low frequency modulated ultrasonic 'pulse-echo' method for monitoring the structure and condition of the layered foundations of offshore wind turbines. Numerical modelling and some laboratory testing will be undertaken to evaluate the sensitivity and characteristics of the spectral response to differing layered model representations of the foundation structure with various condition 'defects' built in. This work will provide experimental and modeled analyses to support a feasibility assessment of the 'pulse-echo' approach, where possible, identifying characteristic acoustic patterns (or signatures) that relate to varying the material properties of the layers and structure of the layered sequence, such as thickness and density and the introduction of inter-layer water. This work will be supported by E.ON Technologies (Ratcliffe) Ltd. who are responsible the maintenance of many of the UK's offshore wind farms such as Robin Rigg in the Solway Firth. These wind farms are national assets; for example Robin Rigg provides 180 MW of power to the National Grid (enough energy for over 100, 000 households). This method could form the basis for a safe, low power technology for deployment on underwater unmanned vehicles for inspecting the inner structure and condition of offshore wind turbine foundations. In so doing, WINSPEC would stimulate a shift towards improved asset inspection technologies supporting preventative interventions maintaining wind farm operation at higher generating capacities.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J020184/1
    Funder Contribution: 580,959 GBP

    This programme is proposed to answer the EPSRC call on "Carbon capture and storage for natural gas power stations" by forming a close partnership between the University of Southampton and E.ON. The proposed research has a strong focus on industrial needs by integrating with the industrial partner's existing activities for developing CCS technologies suitable for commercial gas power plants. E.ON is generating around 10% of the UK's electricity and is committed to reducing its CO2 emission by 50% by 2030 (1990 baseline). E.ON has setup a dedicated CCS unit to address the technical challenges while one of the priorities is to develop CCS technologies suitable for natural gas power stations. This research specifically targets at natural gas power plants, which has a lower concentration of CO2 approx. 4% compared to 13% from coal-fired plants, and harder to extract, representing the most challenging case for CCS. Carbon capture and storage involves separating the CO2 from emissions so it can be transported and stored away from the atmosphere. The most commercially viable approach to be fitted in natural gas power plants is the post-combustion capture which absorbs CO2 from the flue gas using a chemical reaction - also known as scrubbing, which E.ON has been actively pursuing and will be the focus of this research. Whilst research on the chemical processes has been taking place for several decades, CFD modelling of the reactor is a recent development. E.ON has recognised that CFD plays a vital role in the optimisation of current CCS reactors by including more CFD research in their future research strategy. University of Southampton is a prime place for CFD based research while the School of Engineering Sciences currently holds £5M CFD focused EPSRC projects. The combined expertise forms a strong academic and industrial partnership to tackle current barriers of reactor scale-up in carbon capture using advanced CFD models. By addressing all the challenges outlined in the EPSRC call, this research aims to design an optimised reactor using a novel CFD modelling approach that is capable of achieving in excess of 90% CO2 absorption whilst ensuring the cost of service energy is minimised to below 35%. The new concept idea will incorporate improved mixing designs and improved heat transfer whilst reducing reactor size. It is planned through the enhancement of current CFD multiphase models to incorporate reaction and the inclusion of flow control devices that an optimal structured packing arrangement, which promotes the reaction process whilst reducing pressure drop, can be found. This project will not only produce conceptual ideas developed through enhance CFD methods but will also perform tests, in a lab-scale reactor, to determine its validity with respect to its flow dynamics and would potentially lead to the production of intellectual property.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K036750/1
    Funder Contribution: 487,679 GBP

    Gaseous renewable bioenergy sources, in the form of biogas and bio-syngas from biomass gasification, are facing a major issue in their utilisation because of the variable fuel properties and accordingly variable combustion performance. The vast change in CH4 concentration of biogas leads to strong fuel variability effects. For the cleaner bio-syngas, which is the gasification product of biomass, the issue of fuel variability is equally important. With variable fuel mixtures, there are concerns over the combustion efficiency/stability as well as the pollutant emissions. To deal with this challenge, a good understanding of the underlying physical and chemical processes of the combustion of biogas and bio-syngas is required. Based on fundamental research, this project is intended to obtain a thorough understanding on the important issue of fuel variability through integrated modelling and experimentation studies. The research has academic, environmental, social, as well as potential economic impacts. This joint project between the Universities of Lancaster and Sheffield aims to develop realistic and predictive physicochemical models for biogas and bio-syngas combustion and mappings between the combustion and emission characteristics and the fuel compositions for clean energy utilisation from renewable gaseous fuels. Based on rigorous modelling and experimentation, the project will deliver a thorough understanding of the utilisation of biogas and bio-syngas, highlighting the effects of variable composition. The project is intended to provide a better understanding of the complex physicochemical processes of bioenergy utilisation, which can advance bioenergy technology towards deployment. The project is composed of four inter-connected work packages: (1) WP1: development of chemical kinetic mechanisms, where a range of kinetic mechanisms for biogas and bio-syngas combustion will be developed and optimised; (2) WP2: large-eddy simulation of biogas and bio-syngas combustion, where parametric studies of fuel variability effects will be performed using advanced turbulent combustion models; (3) WP3: experimentation of biogas and bio-syngas combustion, where advanced combustion diagnostics will be systematically carried out; and (4) WP4: validation, integration and optimisation, where guidelines on the utilisation of biogas and bio-syngas with different compositions will be drawn.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I029605/1
    Funder Contribution: 452,147 GBP

    In many cases failure mechanisms initiate and propagate from the surface, including failure under corrosion, fatigue and wear. Critical to this is the surface finish (SF) and the surface integrity (SI). While surface finish has received much attention, surface integrity, a term used to describe the localised sub-surface region that differs from the bulk (residual stresses, plastic deformation, chemical changes, hardness, etc) has received much less attention. Traditionally people have used simple cross sections to examine the surface microstructure.In this project we will apply a suite of state-of-the-art methods to characterise as fully as possible the local microstructure in 3D across a range of scales. These include serial sectioning using a focused ion beam (FIB), mechanical sectioning and X-ray tomography. In the latter X-rays are used to obtain a 3D picture without mechanically sectioning the sample. Critical to the former methods are the means of removing material quickly and efficiently without introducing damage. Emerging methods to remove the damaged layer will be developed such that we can obtain EBSD, texture, chemical mapping, residual stress and insights into plastic deformation near-surface. This will lead to one of the best surface integrity assessment facilities in the world to support industry. In addition we will develop micromechanical methods to assess mechanical properties and corrosion and wear performance. In this way we will relate surface integrity to surface durability. This is critical if we are to predict and engineer surface performance. In addition to developing these metrology tools we will apply them to a set of industrial case studies including corrosion of stainless steel for the energy sector, the performance of thermal barrier coatings for the turbine engine sector, the wear performances of WC-Co coatings and nanostructured coatings. Further case studies will be identified by our industrial steering group.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.