Powered by OpenAIRE graph
Found an issue? Give us feedback

AVANZARE

AVANZARE INNOVACION TECNOLOGICA SL
Country: Spain
32 Projects, page 1 of 7
  • Funder: European Commission Project Code: 101092971
    Overall Budget: 2,744,660 EURFunder Contribution: 2,744,650 EUR

    The incidental, accidental, or intentional release of manufactured nanomaterials into the environment and its exposure to humans is inevitable due to the exponential growth in invention, production, and use of them. It can have a huge impact in our health specially in the most sensible and exposed human body organs such us lungs, stomach, and brain. iCare aim to to develop a resilient and adaptive set of advanced imaging technologies to quantify physical-chemistry properties for ANMC in complex matrices. The main objective will focus on a integrated model system to characterize and predict the impact of nanomaterials on brain health to prevent the toxicity nanomaterials. The project makes accessible for industry a set of techniques and methodologies to evaluate changes in morphology, chemical composition and reactivity of nanomaterials when exposed to complex homogenous matrices mimicking environmental and biological exposure, with a particular emphasis on high-resolution imaging methodologies. To achieve this goal the project the project brings together in the consortium 11 partners from different backgrounds such as RTOs, SMEs, industries and universities from different EU and non-eu countries and coming from different fields like nanotech, toxicology, advanced materials, advanced imaging, … During the 48 months long of the project, the consortium will work on the development of different activities to achieve the following results: 1)new imaging methods achieving new high resolution methodologies and new super resolution imaging techniques 2)development of toxicology testing protocols and addressing current gaps in nanotoxicology, 3)development of tools and methods bringing the gap in vitro and in vivo testing, 4)efficiency of materials and product development 5)Delivery of reliable data and improved data reporting and finally development of harmonised standardised test methods that can be used in regulatory frameworks.

    more_vert
  • Funder: European Commission Project Code: 101129661
    Overall Budget: 3,635,140 EURFunder Contribution: 3,635,140 EUR

    Humanity is approaching a cornerstone where Climate Change will transform society, industry and economy. Therefore, moving away from inefficient energy consumption and fossil fuels is more urgent than ever. Renewable energy sources are growing fast but their full integration will make necessary not just a boost of their efficiency but rather a quantum leap in energy management. Such paradigm change will come from technologies adaptable to changing climate conditions and, importantly, making use of widely available non-critical materials. ADAPTATION vision is to challenge current paradigms in solar energy harvesting and their integration by developing a new solar material platform that will integrate thermal management and energy collection in a single material, reducing electricity peak profile and allowing easy adaptation of the energy harvesting properties to different climate conditions. For this purpose, we will take inspiration from the two most efficient energy management processes on Earth: photosynthesis and terrestrial radiative cooling. ADAPTATION will mimic simultaneously the strategies followed by plants during photosynthesis to collect and manage energy at the nanoscale and the power-free radiative cooling of Earth by thermal regulation at the microscale. These extraordinary energy collection and managing strategies are robust to disorder and provide self-regulatory cooling capacities which make them ideal to be integrated into a wide spectrum of physical objects, powering them with a sustainable energy source. In ADAPTATION we will develop the building blocks for this technology and will demonstrate its implementation with two sustainable novel device architectures. Our innovative vision is based on the multidisciplinary background of its consortium with experts in geosciences, polaritonic photonics, colloidal and supramolecular chemistry, materials engineering, quantum technologies or photovoltaics including high-tech industrial implementation.

    more_vert
  • Funder: European Commission Project Code: 232100
    more_vert
  • Funder: European Commission Project Code: 862195
    Overall Budget: 5,979,610 EURFunder Contribution: 5,979,610 EUR

    A major challenge for the global nanotechnology sector is the development of safe and functional engineered nanomaterials (ENMs) and nano-enabled products (NEPs). In this context, the application of the Safe-by-Design (SbD) concept has been adopted recently by the nanosafety community as a means to dampen human health and environmental risks, applying preventive safety measures during the design stage of a facility, process, material or product. However and despite its importance, SbD prescriptions are still in their infancy, and are hampered among other things by the lack of comprehensive data about the performance, hazard and release potential of the great variety of NEPs in use. SbD4Nano addresses that problem creating a comprehensive new e-infrastructure to foster dialogue and collaboration between all actors in the supply chain for a knowledge-driven definition of SbD setups that optimize hazard, technical performance and economic costs. Our project developes a validated rapid hazard profiling module, coupled to a new exposure-driven modelling framework to reduce toxicity. This safe-born material also undergoes a cost-benefit analysis algorithm to find the best compromise between safety and a industrially convenient technical performance. Finally, a new software interface where product information can be exchanged between the supply chain participants is the tool that wraps up, finishing the collaborative spirit of SbD4Nano between regulators, researchers and industry. Coherently with its goals, our SbD4Nano project is international and open-scienced in essence, with the clear aim of impacting the EU policies as well as directly and clearly benefiting the citizen.

    more_vert
  • Funder: European Commission Project Code: 680599
    Overall Budget: 3,996,170 EURFunder Contribution: 3,996,170 EUR

    Waste heat recovery systems can offer significant energy savings and substantial greenhouse gas emission reductions. The waste heat recovery market is projected to exceed €45,0 billion by 2018, but for this projection to materialise and for the European manufacturing and user industry to benefit from these developments, technological improvements and innovations should take place aimed at improving the energy efficiency of heat recovery equipment and reducing installed costs. The overall aim of the project is to develop and demonstrate technologies and processes for efficient and cost effective heat recovery from industrial facilities in the temperature range 70°C to 1000°C and the optimum integration of these technologies with the existing energy system or for over the fence export of recovered heat and generated electricity if appropriate. To achieve this challenging aim, and ensure wide application of the technologies and approaches developed, the project brings together a very strong consortium comprising of RTD providers, technology providers and more importantly large and SME users who will provide demonstration sites for the technologies. The project will focus on two-phase innovative heat transfer technologies (heat pipes-HP) for the recovery of heat from medium and low temperature sources and the use of this heat for; a) within the same facility or export over the fence; b) for generation of electrical power; or a combination of (a) and (b) depending on the needs. For power generation the project will develop and demonstrate at industrial sites the Trilateral Flash System (TFC) for low temperature waste heat sources, 70°C to 200°C and the Supercritical Carbon Dioxide System (sCO2) for temperatures above 200°C. It is projected that these technologies used alone or in combination with the HP technologies will lead to energy and GHG emission savings well in excess of 15% and attractive economic performance with payback periods of less than 3,0 years.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.