Powered by OpenAIRE graph
Found an issue? Give us feedback

Nuovo Pignone Tecnologie s.r.l.

NUOVO PIGNONE TECNOLOGIE SRL
Country: Italy

Nuovo Pignone Tecnologie s.r.l.

12 Projects, page 1 of 3
  • Funder: European Commission Project Code: 101136656
    Overall Budget: 12,269,100 EURFunder Contribution: 6,000,000 EUR

    The HyPowerGT project aims at moving technological frontiers to enable gas turbines to operate on hydrogen without dilution. The core technology is a novel dry-low emission combustion technology (DLE H2) capable of handling mixtures of natural gas and hydrogen with concentrations up to 100% H2. The combustion technology has been successfully validated at TRL5 (early 2021) retrofitted on the combustion system of a 13 MWe industrial gas turbine (NovaLT12). Besides ensuring low emissions and high efficiency, the DLE H2 combustion technology offers fuel flexibility and response capability on a par with modern gas-turbine engines fired with natural gas. The new technology will be fully retrofittable to existing gas turbines, thereby providing opportunities for refurbishing existing assets in industry (CHP) and offering new capacities in the power sector for load levelling the grid system (unregulated power) and for mechanical drives. The DLE H2 technology adheres to the strictest specifications for fuel flexibility, NOx emissions, ramp-up rate, and safety, stated in the Strategic Research and Innovation Agenda 2021-2027. System prototype. The new DLE H2 combustion technology will be further refined and matured and, towards the end of the project, demonstrated at TRL7 on a 16.9 MWe gas-turbine engine (NovaLT16) fired with fuel blends mixed with hydrogen from 0-100% H2. Within this wide range, emphasis is placed on meeting pre-set targets for (a) fuel flexibility and handling capabilities, (b) concentration of hydrogen fuel during the start-up phase, (c) ability to operate at varying hydrogen contents, (d) minimum ramp speed, and (e) safety aspects pertaining to any level with regard to related systems and applications targeting industrial gas-turbine engines in the 10-20 MWe class. A digital twin will be developed to simulate performance and durability characteristics, emulating cyclic operations of a real cogeneration plant in the Italian paper industry.

    more_vert
  • Funder: European Commission Project Code: 101069665
    Overall Budget: 2,922,220 EURFunder Contribution: 2,922,220 EUR

    The achievement of the EU targets established for 2030 for a more sustainable, cost-effective and environmentally-neutral energy production will not only require increasing the penetration of renewable energy sources (RES) into the actual mix, but necessarily point to reduce the carbon footprint of the conventional technologies based on the use of natural gas which is required to complement and compensate intermittent availability of RES. TRANSITION objective is to pave the way for carbon-neutral energy generation from natural gas-fired power plants using gas turbines (GT), by enabling a highly efficient Carbon Capture and Storage (CCS) process in the post-combustion phase. This will be achieved by the development of advanced hydrogen assisted combustion technologies capable to permit stable engine operations with high Exhaust Gas Recirculation (EGR) rates leading to high CO2 content in the exhaust gas sent to the CCS unit. Two distinct scenarios will be considered, by i) validating up to TRL4 retrofit hydrogen-based burners targeting 50% EGR rate and ii) proving up to TRL 3 more aggressive technologies adopting hydrogen/oxygen flame piloting to reach 60% EGR. Experimental tests (from atmospheric up to full-engine pressure) will support the technology assessment and the validation of high-fidelity numerical CFD models. Overall CCS-GT system integration will be also carried out with technical and economic analysis. The global sustainability of the proposed technologies will also be investigated to assess environmental/social/economic impacts. TRANSITION outcomes will enable the decarbonisation of GT-based power plants, which are among the most efficient energy thermal generators adopted in several energy-intensive applications. The multi-fuel capabilities and the retrofit opportunity of the developed systems will allow targeting hard-to-decarbonize sectors enabling an efficient transition to a net greenhouse gas neutral EU economy.

    more_vert
  • Funder: European Commission Project Code: 101137955
    Overall Budget: 3,063,220 EURFunder Contribution: 2,994,200 EUR

    To mitigate the impact of greenhouse gas on the environment and climate, the gas turbine power generation industry must rapidly reduce its emissions. This requires abandoning the traditional combustion of carbon-based natural gas in favour of carbon-free fuels. ACHIEVE aims at developing the fundamental knowledge to enable a transition to unconventional carbon-free fuel blends based around H2 and NH3 to achieve zero carbon emissions, ultra-low NOx emissions, and stable gas turbine operation. ACHIEVE proposes a three-pronged strategy consisting of (a) experimental and (b) numerical activities, that will advance the technology readiness level (TRL) up to 4 for practical low emissions combustors for realistic and representative blends of fuels, as well as (c) system level engagement with OEMS, end users, and stakeholders. Experimental campaigns will explore combustor stability limits, emissions, and fundamental aspects of the combustion of hydrogen blends, with the complexity of the experimental burners and operating conditions increasing over time and culminating in tests performed at intermediate pressures and powers relevant for gas turbine conditions. Numerical activities will address combustion modelling challenges, including chemical kinetics, fundamental physics governing flame dynamics, ushering in new modelling techniques such as artificially thickened flames coupled with virtual chemistry, sub-grid LES models for thermo-diffusive instabilities and stability analysis aimed to understand and predict NOx formation mechanism, lean blow off, flashback limits and thermoacoustic instabilities. Real-time monitoring and predictive capabilities for practical combustion systems will also be developed. Finally, in the third prong, engagement with industry, OEMs, and other target groups will leverage the results of ACHIEVE with the necessary stakeholders to progress the transition to a carbon-free fuels for power generation.

    more_vert
  • Funder: European Commission Project Code: 101192349
    Funder Contribution: 3,999,660 EUR

    InsigH2t aims to advance the current scientific understanding regarding the effect of pressure on the turbulent burning rate, thermoacoustic response, and emissions performance of premixed hydrogen flames under relevant gas-turbines operating conditions. Hydrogen, with its high diffusivity and reactivity, poses significant challenges to its clean and efficient utilisation as a fuel in gas-turbines, due to the lack of understanding of its pressure-dependent turbulent burning rate, crucial for combustion stability in gas-turbines operation. InsigH2t leverages high-pressure experimental measurements, featuring advanced optical diagnostics, coupled to cutting-edge direct numerical simulations, focusing on a selection of simple canonical flames that are paradigms of more complex industrial burner geometries and configurations. The fundamental insights gained will facilitate the development of advanced models and enhanced design tools, empowering industrial OEMs to reduce the significant development time and costs of hydrogen combustion technologies. By leveraging science-based predictive capabilities, InsigH2t aims to accelerate the deployment of clean, reliable, and efficient hydrogen-fired gas turbines. The project's impact extends beyond scientific understanding, addressing directly relevant industry challenges. Crucially, the involvement of two gas turbine OEMs ensures full alignment with the Strategic Research and Innovation Agenda of the Clean Hydrogen Joint Undertaking, facilitating the swift transfer of improved combustion methodologies and understanding towards application in operational power plants. Ultimately, InsigH2t's contributions align fully with the objectives of the EU Green Deal, reducing dependency on fossil fuels and offering a tangible pathway towards a more sustainable energy future.

    more_vert
  • Funder: European Commission Project Code: 814985
    Overall Budget: 4,950,270 EURFunder Contribution: 4,950,270 EUR

    The main objective of the SCARABEUS project is the reduction of the CAPEX and OPEX in concentrated solar power technologies by about 32% and 40% respectively, leading to a final cost of Electricity below 96 €/MWh (lower than 30% of the actual value) through an innovative power cycle based on CO2 blends. This cost reduction will be able to close the gap between CSP and other renewable technologies. This project fits in the call "New cycles and innovative power blocks for CSP plants." as a brand new power cycle concept will be developed. With respect to state-of-the-art sCO2 cycles, the addition of small quantities of selected elements to pure CO2 (i.e. inorganic compounds and fluorocarbons), known as CO2 blending, can increase the CO2 critical point allowing the adoption of condensing cycle even in typical CSP plant locations. Condensing sCO2 cycles have higher thermal-to-electricity conversion efficiency with respect to conventional steam and sCO2 cycles.In addition, higher maximum operating temperature with respect to steam cycles can be adopted with further efficiency increase. The combination of these two aspects enables drastic reductions of the levelised cost of electricity In the project, CO2 blends stable at temperatures up to 700°C (which corresponds to 100°C above current CSP maximum temperatures) and with a pseudocritical temperature of about 50°C will be investigated. A preliminary screen was performed identifying some potential candidates (i.e. TiCl4). Assuming the simple cycle configuration, the TiCl4-blended CO2 outperforms the cycle using pure CO2 by 5% points at 700°C . When using the advanced sCO2 cycle, the efficiency gain is reduced to 2% points, but with significant cost savings. The proposed CO2 blend will be tested in a loop at 300 kWth scale with typical CSP fluids for 300 hours. Long term stability will be measured for 2000 hours and material compatibility assessed through dedicated experiments.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.