Powered by OpenAIRE graph
Found an issue? Give us feedback

Fujitsu (United Kingdom)

Fujitsu (United Kingdom)

13 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: BB/E527747/1
    Funder Contribution: 70,820 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L000407/1
    Funder Contribution: 1,287,360 GBP

    Our team specialises in the development of finite element methods to computationally simulate fluid flow, particularly low Mach number, transient, separated fluid flows in complex geometries and in the presence of strong multiphysics coupling. These models can be used to make predictions and answer scientific questions in problems ranging from blood flow through an arterial bypass graft to the flow over components of a Formula 1 racing car to explaining how the ocean circulates or predicting the response of the Earth's climate to increased CO2 in the atmosphere. What unifies these flows is that they have common features, such as vortices, that occur across a huge range of sizes and times; these features have a critical effect on the phenomena being studied. The range of these problem means that to address grand challenges such as the flow of blood in the numerous arteries of the human body, over a full Formula 1 car or the interaction of a massive array of tidal turbines, it is necessary to combine state-of-the-art modelling techniques with the capability to run models on massively parallel supercomputers. In recognition of the recent changes in computer hardware, this platform will enable the group to promote the next generation of developers to provide general purpose software that takes advantage of cutting edge computer science to enable effective use of parallel computers using emerging hardware in a way that is accessible to fluid modelling experts as well as computer scientists. Hence this platform brings together a team of computer scientists and computational engineers in a fundamentally multidisciplinary project, with the dual aim of providing flexible, internationally respected and widely adopted software libraries, and of training young researchers in this emerging area.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L018659/1
    Funder Contribution: 293,485 GBP

    According to Moore's law, the number of transistors on a micro-chip doubles every two years. Hence, the transistor size is expected to approach atomic scale in the near future due to our quest for miniaturization and more processing power. However, atomic level behaviour is governed by the laws of quantum physics, which are significantly different from those of classical physics. More explicitly, the inherent parallelism associated with quantum entities allows a quantum computer to carry out operations in parallel, unlike conventional computers. More significantly, quantum computers are capable of solving challenging optimization problems in a fraction of the time required by a conventional computer. However, the major impediment in the practical realization of quantum computers is the sensitivity of the quantum states, which collapse when they interact with their environment. Hence, powerful Quantum Error Correction (QEC) codes are needed for protecting the fragile quantum states from undesired influences and for facilitating the robust implementation of quantum computers. The inherent parallel processing capability of quantum computers will also be exploited to dramatically reduce the detection complexity in future generation communications systems. In this work, we aim for jointly designing and ameliorating classical and quantum algorithms to support each other in creating powerful communications systems. More explicitly, the inherent parallelism of quantum computing will be exploited for mitigating the high complexity of classical detectors. Then, near-capacity QEC codes will be designed by appropriately adapting algorithms and design techniques used in classical Forward Error Correction (FEC) codes. Finally, cooperative communications involving both the classical and quantum domains will be conceived. The implementation of a quantum computer purely based on quantum-domain hardware and software is still an open challenge. However, a classical computer employing some quantum chips for achieving efficient parallel detection/processing may be expected to be implemented soon. This project is expected to produce a 'quantum-leap' towards the next-generation Internet, involving both classical and quantum information processing, for providing reliable and secure communications networks as well as affordable detection complexity.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K033166/1
    Funder Contribution: 587,661 GBP

    Future deployments of wireless sensor network (WSN) infrastructures for environmental, industrial or event monitoring are expected to be equipped with energy harvesters (e.g. piezoelectric, thermal or photovoltaic) in order to substantially increase their autonomy and lifetime. However, it is also widely recognized that the existing gap between the sensors' energy availability and the sensors' energy consumption requirements is not likely to close in the near future due to limitations in current energy harvesting (EH) technology, together with the surge in demand for more data-intensive applications. Hence, perpetually operating WSNs are currently impossible to realize for data-intensive applications, as significant (and costly) human intervention is required to replace batteries. With the continuous improvement of energy efficiency representing a major drive in WSN research, the major objective of this research project is to develop transformative sensing mechanisms, which can be used in conjunction with current or upcoming EH capabilities, in order to enable the deployment of energy neutral or nearly energy neutral WSNs with practical network lifetime and data gathering rates up to two orders of magnitude higher than the current state-of-the-art. The theoretical foundations of the proposed research are the emerging paradigms of compressive sensing (CS) and distributed compressive sensing (DCS) as well as energy- and information-optimal data acquisition and transmission protocols. These elements offer the means to tightly couple the energy consumption process to the random nature of the energy harvesting process in a WSN in order to achieve the breakthroughs in network lifetime and data gathering rates. The proposed project brings together a team of theoreticians and experimentalists working in areas of the EPSRC ICT portfolio that have been identified for expansion. This team is well placed to be able to develop, implement and evaluate the novel WSN technology. The consortium also comprises a number of established and early stage companies that clearly view the project as one that will impact their medium and long term product developments and also strengthen their strategic links with world class academic institutions. We anticipate that a successful demonstration of the novel WSN technology will generate significant interest in the machine-to-machine (M2M) and Internet of Things (IoT) industries both in the UK and abroad.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K040006/1
    Funder Contribution: 585,002 GBP

    In view of the rapid increase in demand for mobile data services, next generation wireless access networks will have to provide greatly increased capacity density, up to 10 Gbps per square kilometre. This will require a much larger density of very small, cheap and energy-efficient base stations, and will place increasing demand on the bandwidth and energy efficiency of the network, and especially the backhaul network. Recent work on network MIMO, or coordinated multipoint (CoMP) has shown that by ensuring base stations cooperate to serve users, especially those close to cell edge, rather than interferring with one another, inter-user interference can be effectively eliminated, greatly increasing the efficiency of the network, in terms of both spectrum and energy. However this tends to greatly increase the backhaul load. This work proposes a form of wireless network coding, called network coded modulation, as an alternative to conventional CoMP. This also enables base station cooperation, but instead of sending multiple separate information flows to each base station, flows are combined using network coding, which in principle allows cooperation with no increase in backhaul load compared to non-cooperative transmission, while gaining very similar advantages to CoMP in terms of bandwidth and energy efficiency. The objective of the proposed work is to establish the practical feasibility of this approach, and evaluate its benefits, as applied to next generation wireless access networks. To this end it will develop practical signalling schemes, network coordination and management protocols, and, with the help of industrial collaborators, will ensure compatibility with developing wireless standards.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.