Powered by OpenAIRE graph
Found an issue? Give us feedback

BPP-Tech

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/R007497/1
    Funder Contribution: 766,237 GBP

    The Made in China 2025 report, highlights ocean renewable energy technologies as one of the 10 areas of opportunity for UK and Chinese companies. The "Outline of the National Marine Economic Development Plan" specifically targets the development of novel ocean farming methods, more productive but also more socially and environmentally compatible. In the EU, the "Blue Growth" program aims at sustainable growth in the marine and maritime sectors, already representing 5.4 million jobs and generating a gross added value of 500 billion euros a year. Offshore structures are very costly. The main idea of a Multi-Purpose Platform (MPP), integrating (for example) renewable energy devices and aquaculture facilities, is to find the synergies to share manufacturing, installation, operation and maintenance, and decommissioning costs. This has the potential to, save money, reduce the overall impact, and maximize the socio-economic benefits. MPP development poses cross-disciplinary challenges, since they simultaneously aim to achieve several potentially conflicting objectives: to be techno-economically feasible, environmentally considered, socially beneficial, and compatible with maritime legislations. In the EU, previous research focused on farms of multi-megawatt MPP (ocean renewable devices + aquaculture systems), with very few/no attempts to investigate lower rated power systems suitable for island/coastal communities. In China, previous projects aimed at island communities focused on renewable energy, but they did not integrate any aquaculture elements. Therefore, for island communities, novel fundamental questions arise, especially in terms of techno-economic feasibility and assessment and maximization of socio-environmental benefits at a completely different scale, but still requiring a whole-system, cross-disciplinary approach. The proposed solution is to investigate which are the specific challenges arising from the integration of these different offshore technologies, and with a multi-disciplinary approach to tackle them, making sure that all the dimensions (technological, economic, social, environmental, legal) are taken into account. The renewable energy technologies (Which wind turbine? Which wave device? What kind of solar panel?) and aquaculture systems most suitable for the needs of an island community will be identified, and the "cross-disciplinary" questions will be defined, e.g. "What is the impact of the noise generated by the renewable energy devices on the (closely co-located) aquaculture species growth rate?". Answering these questions, the novel contribution will consist in developing approaches to assess the feasibility of an MPP system, focusing on: global MPP dynamic response to metocean conditions, overall integrated control and power management strategies, environmental impact, socio-economic risks and benefits. The potential of these methodologies will be then show-cased through two case-studies, one focusing on an island community in China, and one in the UK. This consortium brings together internationally recognised experts from three Chinese and three British universities and institutes, for a total of 20 investigators, in the fields of solar and offshore wind and wave energy, control systems for renewable energy devices, environmental and socio-economic impact of renewables and aquaculture systems, aquaculture and integrated multi-trophic aquaculture development, and ecosystem modelling. These investigators are also leading members of the research community, directly involved in: Renewable Energy Key Lab of Chinese Academy of Sciences, IEC and Chinese National Standardization Committee for Marine Energy Devices, Supergen Wind Hub, EU Energy Research Alliance JP Wind, ITTC Ocean Engineering Committee, the Royal Institution of Naval Architects Maritime Innovation Committee, ICES WG-Marine Mammal Ecology, International Platform for Biodiversity and Ecosystem, Ecopath Consortium Advisory Board.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R007497/2
    Funder Contribution: 574,901 GBP

    The Made in China 2025 report, highlights ocean renewable energy technologies as one of the 10 areas of opportunity for UK and Chinese companies. The "Outline of the National Marine Economic Development Plan" specifically targets the development of novel ocean farming methods, more productive but also more socially and environmentally compatible. In the EU, the "Blue Growth" program aims at sustainable growth in the marine and maritime sectors, already representing 5.4 million jobs and generating a gross added value of 500 billion euros a year. Offshore structures are very costly. The main idea of a Multi-Purpose Platform (MPP), integrating (for example) renewable energy devices and aquaculture facilities, is to find the synergies to share manufacturing, installation, operation and maintenance, and decommissioning costs. This has the potential to, save money, reduce the overall impact, and maximize the socio-economic benefits. MPP development poses cross-disciplinary challenges, since they simultaneously aim to achieve several potentially conflicting objectives: to be techno-economically feasible, environmentally considered, socially beneficial, and compatible with maritime legislations. In the EU, previous research focused on farms of multi-megawatt MPP (ocean renewable devices + aquaculture systems), with very few/no attempts to investigate lower rated power systems suitable for island/coastal communities. In China, previous projects aimed at island communities focused on renewable energy, but they did not integrate any aquaculture elements. Therefore, for island communities, novel fundamental questions arise, especially in terms of techno-economic feasibility and assessment and maximization of socio-environmental benefits at a completely different scale, but still requiring a whole-system, cross-disciplinary approach. The proposed solution is to investigate which are the specific challenges arising from the integration of these different offshore technologies, and with a multi-disciplinary approach to tackle them, making sure that all the dimensions (technological, economic, social, environmental, legal) are taken into account. The renewable energy technologies (Which wind turbine? Which wave device? What kind of solar panel?) and aquaculture systems most suitable for the needs of an island community will be identified, and the "cross-disciplinary" questions will be defined, e.g. "What is the impact of the noise generated by the renewable energy devices on the (closely co-located) aquaculture species growth rate?". Answering these questions, the novel contribution will consist in developing approaches to assess the feasibility of an MPP system, focusing on: global MPP dynamic response to metocean conditions, overall integrated control and power management strategies, environmental impact, socio-economic risks and benefits. The potential of these methodologies will be then show-cased through two case-studies, one focusing on an island community in China, and one in the UK. This consortium brings together internationally recognised experts from three Chinese and three British universities and institutes, for a total of 20 investigators, in the fields of solar and offshore wind and wave energy, control systems for renewable energy devices, environmental and socio-economic impact of renewables and aquaculture systems, aquaculture and integrated multi-trophic aquaculture development, and ecosystem modelling. These investigators are also leading members of the research community, directly involved in: Renewable Energy Key Lab of Chinese Academy of Sciences, IEC and Chinese National Standardization Committee for Marine Energy Devices, Supergen Wind Hub, EU Energy Research Alliance JP Wind, ITTC Ocean Engineering Committee, the Royal Institution of Naval Architects Maritime Innovation Committee, ICES WG-Marine Mammal Ecology, International Platform for Biodiversity and Ecosystem, Ecopath Consortium Advisory Board.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P009743/1
    Funder Contribution: 3,048,220 GBP

    This project will undertake the research necessary for the remote inspection and asset management of offshore wind farms and their connection to shore. This industry has the potential to be worth £2billion annually by 2025 in the UK alone according to studies for the Crown Estate. At present most Operation and Maintenance (O&M) is still undertaken manually onsite. Remote monitoring through advanced sensing, robotics, data-mining and physics-of-failure models therefore has significant potential to improve safety and reduce costs. Typically 80-90% of the cost of offshore O&M according to the Crown Estate is a function of accessibility during inspection - the need to get engineers and technicians to remote sites to evaluate a problem and decide what remedial action to undertake. Minimising the need for human intervention offshore is a key route to maximising the potential, and minimising the cost, for offshore low-carbon generation. This will also ensure potential problems are picked up early, when the intervention required is minimal, before major damage has occurred and when maintenance can be scheduled during a good weather window. As the Crown Estate has identified: "There is an increased focus on design for reliability and maintenance in the industry in general, but the reality is that there is a still a long way to go. Wind turbine, foundation and electrical elements of the project infrastructure would all benefit from innovative solutions which can demonstrably reduce O&M spending and downtime". Recent, more detailed, academic studies support this position. The wind farm is however an extremely complicated system-of-systems consisting of the wind turbines, the collection array and the connection to shore. This consists of electrical, mechanical, thermal and materials engineering systems and their complex interactions. Data needs to be extracted from each of these, assessed as to its significance and combined in models that give meaningful diagnostic and prognostic information. This needs to be achieved without overwhelming the user. Unfortunately, appropriate multi-physics sensing schemes and reliability models are a complex and developing field, and the required knowledge base is presently scattered across a variety of different UK universities and subject specialisms. This project will bring together and consolidate theoretical underpinning research from a variety of disparate prior research work, in different subject areas and at different universities. Advanced robotic monitoring and advanced sensing techniques will be integrated into diagnostic and prognostic schemes which will allow improved information to be streamed into multi-physics operational models for offshore windfarms. Life-time, reliability and physics of failure models will be adapted to provide a holistic view of wind-farms system health and include these new automated information flows. While aspects of the techniques required in this offshore application have been previously used in other fields, they are innovative for the complex problems and harsh environment in this offshore system-of-systems. 'Marinising' these methods is a substantial challenge in itself. The investigation of an integrated monitoring platform and the reformulation of models and techniques to allow synergistic use of data flow in an effective and efficient diagnostic and prognostic model is ambitious and would allow a major step change over present practice.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.