
ISOR
14 Projects, page 1 of 3
Open Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2025Partners:ISOR, SINTEF AS, GEORG, ON POWER OHF, CURISTEC +2 partnersISOR,SINTEF AS,GEORG,ON POWER OHF,CURISTEC,HORNET LASER CLADDING B.V.,CONS. SVILUPPO DELLE AREE GEOTERMICHEFunder: European Commission Project Code: 101084623Overall Budget: 4,184,140 EURFunder Contribution: 4,184,140 EURThe COMPASS project is inspired by global efforts to improve utilization of geothermal resources by enlarging production fields downwards. Energy output can be enhanced, without the need to expand surface infrastructure, by drilling into deep and hot formations. Calculations indicate that wells drilled into superhot conditions will yield 5-10 times more than a conventional well which can significantly reduce number of wells required. The main challenges to achieve this are related to the well integrity; due to extreme temperature changes and corrosive fluid chemistry encountered. Two of three wells in the Iceland Deep Drilling Project (IDDP) have already been drilled and had serious problems with casing failures. Numerous examples of casing failures in conventional geothermal wells show that current well concepts, mainly transferred from oil and gas applications, are barely sufficient for geothermal use. COMPASS will address these challenges by developing improved and innovative well casing technologies: -To mitigate casing failures, novel foam cement solutions will be developed suitable for high temperature formations. This system would work with available flexible couplings to mitigate high-temperature induced stresses and ensuring well integrity. - Cost-effective laser-cladding will be used to improve corrosion protection inside the casing pipes. These technology developments will be enhanced with a robust well design solution addressing challenges, reducing project risk and enabling reduction of LCOE. The new well concept will enable cost-effective geothermal developments in new types of geological settings and new regions. The COMPASS consortium contains a diverse team of major geothermal research institutes and leading industry players. This combination ensures cross-fertilisation, sharing of knowledge and experience, and seamless transfer of the novel well construction technologies by industry application, including significant citizen e
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::2fe5227eb2fc1ce4cd4f642e50634647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::2fe5227eb2fc1ce4cd4f642e50634647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2020Partners:STATOIL PETROLEUM, KIT, GEORG, BRGM, Fonroche Géothermie +5 partnersSTATOIL PETROLEUM,KIT,GEORG,BRGM,Fonroche Géothermie,EGP,ISOR,LANDSVIRKJUN,HS ORKA HF,HVGFunder: European Commission Project Code: 690771Overall Budget: 42,173,600 EURFunder Contribution: 18,982,900 EUROur goal with the DEEPEGS project is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. Testing of stimulating technologies for EGS in deep wells in different geologies, will deliver new innovative solutions and models for wider deployments of EGS reservoirs with sufficient permeability for delivering significant amounts of geothermal power across Europe. DEEPEGS will demonstrate advanced technologies in three geothermal reservoir types that provide all unique condition for demonstrating the applicability of this “tool bag” on different geological conditions. We will demonstrate EGS for widespread exploitation of high enthalpy heat (i) beneath existing hydrothermal field at Reykjanes (volcanic environment) with temperature up to 550°C and (ii) very deep hydrothermal reservoir Vendenheim with temperatures up to 220°C that is located in the Upper Rhine Graben (URG), a tertiary-age NNE directional rift enclosed in the European Cenozoic Rift System (ECRIS). ECRIS is an 1100 km long system of rifts formed in the foreland of the Alps as the lithosphere responded to the effects of the Alpine and Pyrenean orogenies (The originally planned French demonstrators of Valence and Riom are also located in rifts belonging to the ECRIS system). Our consortium is industry driven with five energy companies that are capable of implementing the project goal through cross-fertilisation and sharing of knowledge. The companies are all highly experienced in energy production, and three of them are already delivering power to national grids from geothermal resources. The focus on business cases will demonstrate significant advances in bringing EGS derived energy (TRL6-7) routinely to market exploitation, and has potential to mobilise project outcomes to full market scales following the end of DEEPEGS project. We seek to understand social concerns about EGS deployments, and will address those concerns in a proactive manner, where the environment, health and safety issues are prioritised and awareness raised for social acceptance. We will through risk analysis and hazard mitigation plans ensure that relevant understanding of the risks and how they can be minimised and will be implemented as part of the RTD approaches, and as a core part of the business case development.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::7c7feb4f588cc4467e0cbad14c4043d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::7c7feb4f588cc4467e0cbad14c4043d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2016 - 2019Partners:Bochum University of Applied Sciences, TU Delft, GFZ, WELLSERVICES GROUP, Helmholtz Association of German Research Centres +6 partnersBochum University of Applied Sciences,TU Delft,GFZ,WELLSERVICES GROUP,Helmholtz Association of German Research Centres,Imperial,TNO,GEOTERMA UAB,Nature Research Centre,ISOR,DTUFunder: European Commission Project Code: 654662Overall Budget: 6,143,420 EURFunder Contribution: 5,892,160 EURWithin the project SURE (Novel Productivity Enhancement Concept for a Sustainable Utilization of a Geothermal Resource) the radial water jet drilling (RJD) technology will be investigated and tested as a method to increase inflow into insufficiently producing geothermal wells. Radial water jet drilling uses the power of a focused jet of fluids, applied to a rock through a coil inserted in an existing well. This technology is likely to provide much better control of the enhanced flow paths around a geothermal well and does not involve the amount of fluid as conventional hydraulic fracturing, reducing the risk of induced seismicity considerably. RJD shall be applied to access and connect high permeable zones within geothermal reservoirs to the main well with a higher degree of control compared to conventional stimulation technologies. A characterization of the parameters controlling the jet-ability of different rock formations, however, has not been performed for the equipment applied so far. SURE will investigate the technology for deep geothermal reservoir rocks at different geological settings such as deep sedimentary basins or magmatic regions at the micro-, meso- and macro-scale. Laboratory tests will include the determination of parameters such as elastic constants, permeability and cohesion of the rocks as well as jetting experiments into large samples in. Samples will be investigated in 3D with micro CT scanners and with standard microscopy approaches. In addition, advanced modelling will help understand the actual mechanism leading to the rock destruction at the tip of the water jet. Last but not least, experimental and modelling results will be validated by controlled experiments in a quarry (mesoscale) which allows precise monitoring of the process, and in two different geothermal wells. The consortium includes the only company in Europe offering the radial drilling service.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::145825e92a4684e1bef9f72b79e09a6d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::145825e92a4684e1bef9f72b79e09a6d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2016 - 2019Partners:TNO, AKIET, BRGM, HUISMAN WELL TECHNOLOGY BV, NORCE +6 partnersTNO,AKIET,BRGM,HUISMAN WELL TECHNOLOGY BV,NORCE,IRIS,GFZ,STATOIL PETROLEUM,Helmholtz Association of German Research Centres,HS ORKA HF,ISORFunder: European Commission Project Code: 654497Overall Budget: 4,704,910 EURFunder Contribution: 4,704,910 EURNew concepts for high-temperature geothermal well technologies are strongly needed to accelerate the development of geothermal resources for power generation in Europe and worldwide in a cost effective and environmentally friendly way. The GeoWell project will address the major bottlenecks like high investment and maintenance costs by developing innovative materials and designs that are superior to the state of the art concepts. The lifetime of a well often determines the economic viability of a geothermal project. Therefore, keeping the geothermal system in operation for several decades is key to the economic success. The objective of GeoWell is to develop reliable, cost effective and environmentally safe well completion and monitoring technologies. This includes: - Reducing down time by optimised well design involving corrosion resistant materials. - Optimisation of cementing procedures that require less time for curing. - Compensate thermal strains between the casing and the well. - Provide a comprehensive database with selective ranking of materials to prevent corrosion, based on environmental conditions for liners, casings and wellhead equipment, up to very high temperatures. - To develop methods to increase the lifetime of the well by analysing the wellbore integrity using novel distributed fiber optic monitoring techniques. - To develop advanced risk analysis tools and risk management procedures for geothermal wells. The proposed work will significantly enhance the current technology position of constructing and operating a geothermal well. GeoWell aims to put Europe in the lead regarding development of deep geothermal energy. The consortium behind GeoWell constitutes a combination of experienced geothermal developers, leading academic institutions, major oil&gas research institutions and an SME. These have access to world-class research facilities including test wells for validation of innovative technologies and laboratories for material testing.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6ef715629e87b94a567a5b7e6d34a762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6ef715629e87b94a567a5b7e6d34a762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2016 - 2019Partners:MinPol, NERC, KUL, VITO, LNEG +9 partnersMinPol,NERC,KUL,VITO,LNEG,SGU,University of Szeged,IGR,EUROPEAN FEDERATION OF GEOLOGISTSFEDERACION EUROPE,ISOR,Engineering agency,LPRC,EPSRC,University of MiskolcFunder: European Commission Project Code: 654100Overall Budget: 4,235,570 EURFunder Contribution: 4,235,570 EURCHPM2030 aims to develop a novel and potentially disruptive technology solution that can help satisfy the European needs for energy and strategic metals in a single interlinked process. Working at the frontiers of geothermal resources development, minerals extraction and electro-metallurgy the project aims at converting ultra-deep metallic mineral formations into an “orebody-EGS” that will serve as a basis for the development of a new type of facility for “Combined Heat, Power and Metal extraction” (CHPM). In the technology envisioned the metal-bearing geological formation will be manipulated in a way that the co-production of energy and metals will be possible, and may be optimised according to the market demands at any given moment in the future. The workplan has been set up in a way to provide proof-of-concept for the following hypotheses: 1. The composition and structure of orebodies have certain advantages that could be used to our advantage when developing an EGS; 2. Metals can be leached from the orebodies in high concentrations over a prolonged period of time and may substantially influence the economics of EGS; 3. The continuous leaching of metals will increase system’s performance over time in a controlled way and without having to use high-pressure reservoir stimulation, minimizing potential detrimental impacts of both heat and metal extraction. As a final outcome the project will deliver blueprints and detailed specifications of a new type of future facility that is designed and operated from the very beginning as a combined heat, power and metal extraction system. The horizontal aim is to provide new impetus to geothermal development in Europe by investigating previously unexplored pathways at low-TRL. This will be achieved by developing a Roadmap in support of the pilot implementation of such system before 2025, and full-scale commercial implementation before 2030
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a600bb02096201734aeddfe45c453c58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a600bb02096201734aeddfe45c453c58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
chevron_right