
FLUXIM
FLUXIM
5 Projects, page 1 of 1
Open Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2022Partners:USTAN, FLUXIM, IP of NASU, University of Bayreuth, SIMBEYOND BV +5 partnersUSTAN,FLUXIM,IP of NASU,University of Bayreuth,SIMBEYOND BV,Durham University,UNIPR,Vilnius University,MERCK KOMMANDITGESELLSCHAFT AUF AKTIEN,Universität AugsburgFunder: European Commission Project Code: 812872Overall Budget: 3,942,040 EURFunder Contribution: 3,942,040 EURThe European Training Network TADFlife will train a cohort of young PhD scientists within a multidisciplinary research program conceived from a simple industrial need, high performance blue OLEDs which also have long lifetime. This is not an easy problem to solve, as although OLEDs are now ubiquitous in phone and TV displays, the blue pixels still operate far below the performance and efficiency of the red and green to achieve acceptable lifetime. TADFlife will follow a new approach to solve this problem using the latest generation of OLED materials, thermally activated delayed fluorescent (TADF) emitters. Through a device simulation development program, which incorporates a high degree of basic photophysics input, predictive models of TADFOLED performance and lifetime will be built and used to design new TADF emitters and hosts which overcome the degradation pathways identified from the model predictions. These new materials will then be synthesised. By introducing the concept of the smart matrix, the complex guest host interactions of TADF materials will be included and used to optimise emitter orientation to maximise light out-coupling from devices. Quantum chemistry will use the photophysics results to direct new materials design in tandem with the model predictions. Taking this dual approach, we believe will lead to solutions so far unobtainable for OLEDs. This highly interlinked program gives a fantastic opportunity for the brightest young chemists, spectroscopists, theoreticians and device physicists to work together, learn complimentary skills that will be in high demand from European OLED industries. Leading experts will give courses on core scientific skills along with soft skills and international secondments will be offered, all to properly prepare them for their future careers. They will be part of a network answering a real industrial need and help to secure the future of our European OLED industries in the global OLED materials arena.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f927ac06be20f6c4586e10b4dac47693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f927ac06be20f6c4586e10b4dac47693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2018Partners:CYNORA GMBH, MPG, TUD, University of Rome Tor Vergata, CNR +7 partnersCYNORA GMBH,MPG,TUD,University of Rome Tor Vergata,CNR,SIM4TEC,COSMOLOGIC GMBH & COKG,FLUXIM,SCHRODINGER GMBH,UPV/EHU,TU/e,BASF SEFunder: European Commission Project Code: 646259Overall Budget: 3,861,110 EURFunder Contribution: 3,669,440 EURThe lifetime, reliability, and efficiency of organic light emitting diodes (OLED) are critical factors precluding a number of novel devices from entering the market. Yet, these stability issues of OLEDs are poorly understood due to their notorious complexity, since multiple degradation and failure channels are possible at different length- and timescales. Current experimental and theoretical models of OLED stability are, to a large extent, empirical. They do not include information about the molecular and meso-scales, which prevents their integration into the workflow of the industrial R&D compound design. It is the idea of this project to integrate various levels of theoretical materials characterization into a single software package, to streamline the research workflows in order for the calculations to be truly usable by materials engineers, complementary to experimental measurements. Towards this goal, this project brings together the academic and industrial expertise of the leading experimental and theoretical groups in the field of organic semiconductors.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ab3291b2f80c4441d99082b45a387757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ab3291b2f80c4441d99082b45a387757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2021Partners:Aristotle University of Thessaloniki, Granta Design (United Kingdom), CRF, NPL MANAGEMENT LIMITED, University of Surrey +7 partnersAristotle University of Thessaloniki,Granta Design (United Kingdom),CRF,NPL MANAGEMENT LIMITED,University of Surrey,AIXTRON SE,APEVA SE,CNRS,University of Ioannina,FLUXIM,OE TECHNOLOGIES PC,HELLENICORGANIC AND PRINTED ELECTRONICS ASSOCIATIONFunder: European Commission Project Code: 760949Overall Budget: 3,993,750 EURFunder Contribution: 3,993,750 EURCORNET is an ambitious project that develop a unique EU Open Innovation Environment (OIE), that cover the triangle of manufacturing, modelling and experimentation for the optimization the Organic/Large Area Electronic (OE) nanomaterials, materials behavior and nano-devices (OPVs, PPVs, OLEDs) manufacturing of R2R printing & gas transport (OVPD) processes, to validate materials models based on experimentation and fabricate tailored OE devices and systems for demonstration to industrial applications (e.g. automotive, greenhouses). CORNET will develop a sustainable OIE Platform and OIE Database for documentation of citable & industrially accepted protocols for OE material and device characterization, modelling and manufacturing. CORNET strategy will establish strong links and clustering with existing EU clusters (as EMMC, EMCC, EPPN), end-user & industrial associations, and EU networks to increase the speed of OE materials/device development and industry uptake, maximize the acceptance of the OIE and push-through standards for adoption by industry worldwide. The CORNET main objectives are to: 1. Develop an effective OIE with world-class experts in Manufacturing, Multiscale Characterization & Modelling, connected to EU clusters, and create a reliable database with citable protocols with contribution to Standards 2. Multiscale Characterization & Modelling to Optimize OE nanomaterials and devices fabrication and Models Validation 3. Optimize the nano-device Manufacturing of OPVs, PPVs, OLEDs by Printing (R2R, S2S) and OVPD Processes 4. Fabricate Tailored Devices, Systems and Demonstrate to industrial applications (e.g. automotive, greenhouses) CORNET has developed a strategic plan for the clustering activities with more than 800 existing related bodies, a Business Plan for the continuation of the OIE beyond the project and the Innovation Management, IPR and legal support services to protect generated foreground and to enable its adoption by the EU research & industrial communities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::77156e775d4067ddd497e72b78a98856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::77156e775d4067ddd497e72b78a98856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2021Partners:Plastic Logic (United Kingdom), CDA, AIMEN, CNRS, FABRICA NACIONAL DE MONEDA Y TIMBRE-REAL CASA DE LA MONEDA +7 partnersPlastic Logic (United Kingdom),CDA,AIMEN,CNRS,FABRICA NACIONAL DE MONEDA Y TIMBRE-REAL CASA DE LA MONEDA,DLED,ICFO,PSA ID,MULTIPHOTON OPTICS GMBH,IMT,THALES,FLUXIMFunder: European Commission Project Code: 780278Overall Budget: 3,889,150 EURFunder Contribution: 3,889,150 EURPHENOmenon will develop and validate an integral manufacturing approach (material, process and technology) for large area direct laser writing of 2&3D optical structures, targeting high speed production of optical surfaces with subwavelength resolution, using NonLinear Absorption. Developments in photochemistry and laser beam forming will allow to produce structures at different scales (100 nm to 10 microns). An unedited productivity in freeform fabrication of 3D structures will trigger the manufacturing of new and powerful optostructures with applications in lighting, displays, sensing, etc. The novelty focuses on the combination of ultrasensitive nonlinear photocurable materials, and the laser projection of up to 1 million simultaneous laser spots. The photochemistry relies on new types of ultrasensitive photoinitiators and groundbreaking nonlinear sensitized resins for CW [Continuous Wave] laser writing. The developments in beam forming are based in modulation with SLMs [Spatial Light Modulators] and hybrid diffractive optics for massive 3D parallelization by imaging and holographic projection. The enabled optical structures (hybrid microlenses, waveguides, polarizers, metasurfaces and holograms) will be modelled at the micro and macroscale, to develop application oriented simulation and design methodologies. Selected demonstrators will show the capability to produce 3D optical micro-nanostructured components with unique optical characteristics, offering differential advantages in many products: advanced security holograms, efficient lighting, high performance optics, backlighting units for displays, holographic HMIs [Human Machine Interface] and planar concentrator microlenses. These components will contribute to address societal challenges like energy efficiency or security while reinforcing EU industry competitiveness. A consortium comprising 4 top Research Institutions and 8 Industrial partners (4 SMEs) covering the complete value chain, will develop this project clearly driven by user needs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::7172a3907077bf0c3713979aa350a62d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::7172a3907077bf0c3713979aa350a62d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2024Partners:TinniT, AIXTRON SE, ANSYS UK LIMITED, ESTECO, Aristotle University of Thessaloniki +8 partnersTinniT,AIXTRON SE,ANSYS UK LIMITED,ESTECO,Aristotle University of Thessaloniki,OE TECHNOLOGIES PC,Granta Design (United Kingdom),KIT,APEVA SE,FLUXIM,University of Surrey,University of Ioannina,CTUFunder: European Commission Project Code: 953187Overall Budget: 4,992,000 EURFunder Contribution: 4,992,000 EURMUSICODE is an ambitious project which addresses the H2020 Call DT-NMBP-11-2020 “Open Innovation Platform for Materials Modelling” that will develop a novel Open Innovation Materials Modelling Platform to enable the Organic and Large Area Electronics Industry (OLAE) to expediate accurate and knowledgeable business decisions on materials design and processing for optimization of the efficiency and quality of OLAE device manufacture. This platform will integrate: (a) Material, process and device modelling with workflows spanning the micro-, meso- and macro- scales, validated by expert academic and industry partners. (b) Integrated data management and modelling framework with ontology-based semantic interoperability between scales, solvers, data and workflows, with industry-accepted material and process modelling parameters and protocols, employing graphical user interface tools for workflow design, analysis, optimization and decision making. (c) Plug-ins to Materials Modelling Marketplaces, Open Translation Environment, Business Decision Support Systems, etc. and to High Performance Computing infrastructures for workflow execution. The platform will demonstrate industry user case workflows to optimize OLAE materials selection & design as well as printing and gas-phase manufacturing. The MUSICODE Business Plan will ensure the platform sustainability, exploitation and industrial adoption beyond the project, with the ambition to become the central Open Innovation Hub for the OLAE industry and evolve as the central paradigm for cross-domain applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f2c985d9f40c2f46cc5de445ff485fcf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::f2c985d9f40c2f46cc5de445ff485fcf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu