
Consarc Design Group (United Kingdom)
Consarc Design Group (United Kingdom)
5 Projects, page 1 of 1
assignment_turned_in Project2009 - 2012Partners:Stone Conservation Services, Stone Conservation Services, University of Oxford, Consarc Design Group (United Kingdom), Consarc Design Group LtdStone Conservation Services,Stone Conservation Services,University of Oxford,Consarc Design Group (United Kingdom),Consarc Design Group LtdFunder: UK Research and Innovation Project Code: EP/G011338/1Funder Contribution: 383,238 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::11954c3c78e59e8dd9b15ed78909110d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::11954c3c78e59e8dd9b15ed78909110d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2012Partners:Stone Conservation Services, QUB, Stone Conservation Services, Consarc Design Group (United Kingdom), Consarc Design Group LtdStone Conservation Services,QUB,Stone Conservation Services,Consarc Design Group (United Kingdom),Consarc Design Group LtdFunder: UK Research and Innovation Project Code: EP/G01051X/1Funder Contribution: 403,809 GBPSUMMARYThere is increasingly compelling evidence that stone decay environments vary significantly across the British Isles, and that these climatic and pollution regimes are themselves changing as, for example, climate itself changes, sulphur emissions are reduced and local levels of atmospheric NOX rise. Because of this there is an urgent need to review the changing nature of decay processes, investigate the new, and developing, environmental conditions that are driving these changes and to scope their impacts on the future decay of masonry materials and any required modifications to specification and remediation strategies. Nowhere is this need more apparent than in the northwest of the UK. The fact that building stones, especially sandstones, already react so adversely and so rapidly to the moist, often salt rich environments found in this region (Smith et al. 2002), must inevitably raise fears of what could happen as a consequence of any increase in their time of wetness associated with projected warmer, wetter and possibly longer winters. In short, in response to changing climate and pollution it is likely that we will have to radically rethink our understanding of masonry decay and conservation.Quartz sandstones have been chosen to investigate these issues because they have proven to be susceptible to, and highly sensitive indicators of, subtle changes in moisture and temperature regimes, as well as pollution conditions. They also provide acid, open-textured conditions that favour algal colonisation. If stonework were to remain wetter for longer and not dry out either as frequently or as thoroughly as before, there are a number of physical and chemical effects that could be hypothesised. These include: the deeper penetration of salts (especially those of high mobility) and increased biological colonisation leading to active biological decay, both chemical and physical, as well as unsightly soiling of buildings that is expensive to remedy.This project will therefore build on earlier research into sandstone decay processes to investigate the likely impacts of predicted climate change on future decay. To do this, it will concentrate on the effects of changes in moisture regime on quartz sandstones. This will combine laboratory simulations with environmental monitoring and the assessment of decay patterns related to conditions of exposure on selected sandstone buildings, linked to sampling and analysis of complete stone blocks. Central to this is the construction of test walls in a wet environment in the west of Northern Ireland with embedded sensor systems to monitor thermal and moisture regimes linked to biological colonisation. This will be validated against laboratory investigations of the colonisation process and the feedbacks that could affect stone decay, together with investigations of ion diffusion associated with prolonged 'deep wetness' of masonry. Because of the detailed knowledge already possessed by the partnership, and the access to buildings undergoing renovation provided by the industrial collaborator, environmental monitoring and sampling will concentrate across Northern Ireland, supported by limited selective sampling of sandstone structures in Scotland and northwest England.Underpinning all investigations into stone per se, is the statistical downscaling of national and regional climate change scenarios, linked to measurements of stone condition and the factors controlling it. This novel approach is essential at a much wider scale if such scenarios are to be successfully translated into meaningful strategies for adaptation to environmental change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::dae74f955a20d3e3ca1edd36b053fddc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::dae74f955a20d3e3ca1edd36b053fddc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2006 - 2009Partners:Amphora NDT (United Kingdom), Consarc Design Group Ltd, QUB, Consarc Design Group (United Kingdom), Gridpoint solutions (United Kingdom) +2 partnersAmphora NDT (United Kingdom),Consarc Design Group Ltd,QUB,Consarc Design Group (United Kingdom),Gridpoint solutions (United Kingdom),Amphora Non-destructive Testing Ltd,Gridpoint solutions limitedFunder: UK Research and Innovation Project Code: EP/D008603/1Funder Contribution: 210,480 GBPStone is widely recognised as a sustainable construction material and as a store of much of the world's tangible cultural heritage. With this recognition has come an understanding that stone has a finite life that can be drastically curtailed when it is placed in the often-aggressive urban environments. In particular, many common building limestones experience seemingly unpredictable, episodic and sometimes catastrophic breakdown as stone strength is exceeded by gradual decay, the slow accumulation of internal stresses and/or subjection to extreme external stresses such as a severe frost. Episodes of rapid decay may be interspersed with periods of relative stability marked by, for example, the formation of pollution-derived calcium sulphate crusts. To control potential catastrophic decay it is therefore necessary to understand why rapid retreat is triggered, what allows it to continue, how it can be halted and how the causes can be avoided in the first place. This is particularly true where inappropriate conservation could accelerate decay, and where choices have to be made between possible replacement stone and stone selection in relation to new structures. To achieve this understanding four questions need to be asked.1. What processes are responsible for rapid retreat?2. What physical, chemical and mineralogical characteristics determine stone susceptibility to rapid retreat and how do these properties change during decay?3. How do microclimatic conditions at and beneath the stone surface change as stone retreats and how do these influence decay mechanisms?4. What permits continued weathering despite rapid loss, of weathered material in which, for example, damaging salts are concentrated?This interdisciplinary project will examine these questions through field studies of stone structures in Oxford and nearby areas built of oolitic limestone (e.g. Bath and Cotswold limestones) that is prone to rapid retreat. Linked to this will be the development of fibre optic sensors that will allow moisture and salt movement within individual blocks to be monitored in relation to environmental conditions, including temperature, relative humidity and surface wetting. These data, and the same sensor technology will be combined with analyses of weathered stone to design laboratory experiments using different varieties of Bath Stone to simulate breakdown patterns and the dynamics of salt and moisture movement as blocks retreat and are progressively sheltered. Results from field studies and controlled laboratory experiments will be combined to explain (model) the factors that determine overall susceptibility to either rapid retreat or stability and the operation of the processes responsible for decay. In particular, results will be used to determine what triggers positive and negative feedbacks that respectively accelerate and decelerate change within the stone decay system. This understanding will be used, in discussion with end-users, to develop protocols for limestone conservation and the selection of new and replacement stone matched to specific environmental conditions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::11b0f83dec2114d060fedccb28a06fd6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::11b0f83dec2114d060fedccb28a06fd6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2006 - 2009Partners:Consarc Design Group (United Kingdom), University of Oxford, Gridpoint solutions (United Kingdom), Consarc Design Group Ltd, Amphora NDT (United Kingdom) +2 partnersConsarc Design Group (United Kingdom),University of Oxford,Gridpoint solutions (United Kingdom),Consarc Design Group Ltd,Amphora NDT (United Kingdom),Amphora Non-destructive Testing Ltd,Gridpoint solutions limitedFunder: UK Research and Innovation Project Code: EP/D008689/1Funder Contribution: 127,359 GBPStone is widely recognised as a sustainable construction material and as a store of much of the world's tangible cultural heritage. With this recognition has come an understanding that stone has a finite life that can be drastically curtailed when it is placed in the often-aggressive urban environments. In particular, many common building limestones experience seemingly unpredictable, episodic and sometimes catastrophic breakdown as stone strength is exceeded by gradual decay, the slow accumulation of internal stresses and/or subjection to extreme external stresses such as a severe frost. Episodes of rapid decay may be interspersed with periods of relative stability marked by, for example, the formation of pollution-derived calcium sulphate crusts. To control potential catastrophic decay it is therefore necessary to understand why rapid retreat is triggered, what allows it to continue, how it can be halted and how the causes can be avoided in the first place. This is particularly true where inappropriate conservation could accelerate decay, and where choices have to be made between possible replacement stone and stone selection in relation to new structures. To achieve this understanding four questions need to be asked.1. What processes are responsible for rapid retreat?2. What physical, chemical and mineralogical characteristics determine stone susceptibility to rapid retreat and how do these properties change during decay?3. How do microclimatic conditions at and beneath the stone surface change as stone retreats and how do these influence decay mechanisms?4. What permits continued weathering despite rapid loss, of weathered material in which, for example, damaging salts are concentrated?This interdisciplinary project will examine these questions through field studies of stone structures in Oxford and nearby areas built of oolitic limestone (e.g. Bath and Cotswold limestones) that is prone to rapid retreat. Linked to this will be the development of fibre optic sensors that will allow moisture and salt movement within individual blocks to be monitored in relation to environmental conditions, including temperature, relative humidity and surface wetting. These data, and the same sensor technology will be combined with analyses of weathered stone to design laboratory experiments using different varieties of Bath Stone to simulate breakdown patterns and the dynamics of salt and moisture movement as blocks retreat and are progressively sheltered. Results from field studies and controlled laboratory experiments will be combined to explain (model) the factors that determine overall susceptibility to either rapid retreat or stability and the operation of the processes responsible for decay. In particular, results will be used to determine what triggers positive and negative feedbacks that respectively accelerate and decelerate change within the stone decay system. This understanding will be used, in discussion with end-users, to develop protocols for limestone conservation and the selection of new and replacement stone matched to specific environmental conditions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e0927bd8137408a63f2ebf36783b5831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e0927bd8137408a63f2ebf36783b5831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2006 - 2009Partners:Consarc Design Group (United Kingdom), Gridpoint solutions limited, Amphora Non-destructive Testing Ltd, Gridpoint solutions (United Kingdom), Consarc Design Group Ltd +2 partnersConsarc Design Group (United Kingdom),Gridpoint solutions limited,Amphora Non-destructive Testing Ltd,Gridpoint solutions (United Kingdom),Consarc Design Group Ltd,City, University of London,Amphora NDT (United Kingdom)Funder: UK Research and Innovation Project Code: EP/D009162/1Funder Contribution: 208,600 GBPStone is widely recognised as a sustainable construction material and as a store of much of the world's tangible cultural heritage. With this recognition has come an understanding that stone has a finite life that can be drastically curtailed when it is placed in the often-aggressive urban environments. In particular, many common building limestones experience seemingly unpredictable, episodic and sometimes catastrophic breakdown as stone strength is exceeded by gradual decay, the slow accumulation of internal stresses and/or subjection to extreme external stresses such as a severe frost. Episodes of rapid decay may be interspersed with periods of relative stability marked by, for example, the formation of pollution-derived calcium sulphate crusts. To control potential catastrophic decay it is therefore necessary to understand why rapid retreat is triggered, what allows it to continue, how it can be halted and how the causes can be avoided in the first place. This is particularly true where inappropriate conservation could accelerate decay, and where choices have to be made between possible replacement stone and stone selection in relation to new structures. To achieve this understanding four questions need to be asked.1. What processes are responsible for rapid retreat?2. What physical, chemical and mineralogical characteristics determine stone susceptibility to rapid retreat and how do these properties change during decay?3. How do microclimatic conditions at and beneath the stone surface change as stone retreats and how do these influence decay mechanisms?4. What permits continued weathering despite rapid loss, of weathered material in which, for example, damaging salts are concentrated?This interdisciplinary project will examine these questions through field studies of stone structures in Oxford and nearby areas built of oolitic limestone (e.g. Bath and Cotswold limestones) that is prone to rapid retreat. Linked to this will be the development of fibre optic sensors that will allow moisture and salt movement within individual blocks to be monitored in relation to environmental conditions, including temperature, relative humidity and surface wetting. These data, and the same sensor technology will be combined with analyses of weathered stone to design laboratory experiments using different varieties of Bath Stone to simulate breakdown patterns and the dynamics of salt and moisture movement as blocks retreat and are progressively sheltered. Results from field studies and controlled laboratory experiments will be combined to explain (model) the factors that determine overall susceptibility to either rapid retreat or stability and the operation of the processes responsible for decay. In particular, results will be used to determine what triggers positive and negative feedbacks that respectively accelerate and decelerate change within the stone decay system. This understanding will be used, in discussion with end-users, to develop protocols for limestone conservation and the selection of new and replacement stone matched to specific environmental conditions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c7c280d8d20a2d80512621c9bd84f04f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c7c280d8d20a2d80512621c9bd84f04f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu