
Processors and Growers Research Organisation
Processors and Growers Research Organisation
3 Projects, page 1 of 1
assignment_turned_in Project2017 - 2023Partners:Senova Ltd, Senova Ltd, Phytatec, Moy Park Ltd, Aberystwyth University +12 partnersSenova Ltd,Senova Ltd,Phytatec,Moy Park Ltd,Aberystwyth University,Phytatec,Stonegate,iDna Genetics Ltd,Processors and Growers Research Organisation,Dalehead Foods Ltd,Dalehead Foods Ltd,iDna Genetics Ltd,Processors&Growers Research Organisation,Moy Park Ltd,Stonegate,Green Label Poultry,Green Label PoultryFunder: UK Research and Innovation Project Code: BB/P017517/1Funder Contribution: 444,738 GBPHigher agricultural productivity and sustainability is critical to meeting the global challenges of food security in the presence of climate change. Legume crops are a critical source of plant-based proteins for people and animals. As the world demand for animal products increases, the demand for vegetable proteins as animal feedstocks also rises and the UK in common with other countries faces a shortfall in domestic vegetable protein production capability. In the EU 70% of the protein fed to animals is imported, mostly soyabean or soya meal with soya meal accounting for 33% of the protein in UK livestock feeds. In 2011-12 UK imports of soya products reached 1.83 million tonnes, the majority of this being transgenic soya imported from South America. Increasing the amount of UK grown protein to replace imported soya products is recognised as a major challenge for the UK animal feed sector. In this LINK proposal we will develop and apply new genetic approaches to enhance the nutritional value (protein and water soluble carbohydrate) of the pea (Pisum sativum L.) seed, to increase the use of pea as a high quality feed in animal diets, reducing the UK protein deficit from the import of soya products and also delivering environmental benefits to livestock production systems. The proposal builds on knowledge gained in BBSRC, EU, Defra, Innovate UK and levy board-funded research on the genetics and agronomy of pulses that have led to the development of novel lines of pea with higher protein content. We will use our expertise in plant genomics, pea genetics and breeding, agronomy, plant chemistry and animal nutrition to integrate the germplasm with improved grain composition into improved pea varieties. With industry partners from the poultry and pig sector as well as crop developers, we will analyse the impact of replacing soya with these new pea varieties in feed rations on the growth of monogastrics and poultry and the economic and environmental impact of their inclusion. Although the focus is on poultry and monogastrics, the project will provide information on the value of including these new pea lines for other sectors (ruminants and aquaculture).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c6d3c80611703257c62f7df1d1cd145a&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c6d3c80611703257c62f7df1d1cd145a&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:pladis (UK), Department for Environment Food and Rural Affairs, John Lewis Partnership (United Kingdom), BioPower Technologies, Legume Technology Ltd +19 partnerspladis (UK),Department for Environment Food and Rural Affairs,John Lewis Partnership (United Kingdom),BioPower Technologies,Legume Technology Ltd,Hodmedod Ltd,Heygates Ltd,UNIVERSITY OF READING,Processors&Growers Research Organisation,DEFRA Westminster,British Nutrition Foundation,pladis (UK),Waitrose,Processors and Growers Research Organisation,BioPower Technologies,University of Reading,Legume Technology Ltd,Heygates Ltd,[no title available],British Nutrition Foundation,Hodmedod Ltd,Agrimetrics Ltd,Agrimetrics (United Kingdom),DEFRA WestminsterFunder: UK Research and Innovation Project Code: BB/W017946/1Funder Contribution: 2,027,640 GBP'Raising the Pulse (RtP)' is based on the concept that considerable health and environmental benefit would result if we could make it easier for the UK population to eat more UK grown pulses. The pulse best suited to the UK, the faba bean, is naturally high in protein, micronutrients and fibre, and has the lowest environmental impact of all crops, as it can 'fix' nitrogen from the atmosphere with no need for polluting nitrate fertilizers. However, most of the population will not significantly increase their consumption unless they are successfully incorporated into familiar looking and tasting, economic and convenient staple foods, such as bread. This has not been done to date because economic incentives do not exist for producers to supply raw materials with defined end use quality, nor for processors to reconfigure their processing plant to accommodate a new raw material. A major stimulus such as that provided by this study is required to encourage food manufacturers to use UK pulses to satisfy consumer demand for plant-based and pulse-rich foods rather than importing chiefly soy-based ingredients. RtP addresses this market failure by bringing together a consortium to develop feasible routes to market for UK produced foods with added faba beans. The project includes experts in diverse areas, including environment, agriculture, food, nutrition, health and consumer behaviour, who have a demonstrated track record in this area and who will work with industry, government and civil society to tackle five linked challenges: Challenge 1: how can environmental impacts of faba beans grown to meet specific quality standards be minimised? We will conduct extensive field trials to establish growing protocols to maximise the amount of nutrients produced per unit area using the best available genetics, agronomy and post-harvest technologies while making detailed measurements of environmental impacts. Challenge 2: how can faba beans from Challenge 1 be prepared for incorporation into a variety of food products such that they retain the highest possible nutritional value and minimal change in taste? Following successful pilot breadmaking trials conducted to demonstrate feasibility, we will optimise cultivar selection, pre-processing and milling steps to obtain faba bean flours that can be successfully combined with wheat flour to make RtP bread that is an acceptable alternative to conventional bread, but with added nutritional and environmental benefits. Challenge 3: what effects do eating more pulses have on nutritional intake and human health? A human study will be performed using RtP bread to determine nutrient availability and its effects on hunger and health markers. Furthermore, two consumer studies, one in student halls of residence and one in the catering outlets on the University of Reading campus, will be conducted. These will investigate whether faba beans offered as RtP breads and in other foods result in a healthier diet and better nutritional knowledge when information of their benefits is given. Challenge 4: how can understanding of consumer attitudes, preferences and behaviours be used to achieve optimum increase in pulse intake? Addressing this crucial point will involve reviewing evidence, performing focus groups, surveys, choice experiment and test market launch. This will include determination of how RtP bread and related foods are perceived, whether they are liked and, therefore, chosen and whether knowledge of their benefits promotes their consumption. Challenge 5: will combine all data collected across the project to create an over-arching mathematical model of interactions between pulse (particularly faba bean) production, manufacturing and consumption. This model will be used to determine the influence on environment and health of legislation and consumer behaviour and to predict the outcomes of specific interventions to hasten the transition of the UK population to a diet that contains more pulses.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e2d503b7b2ad2707d578f06e8cdbfed0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e2d503b7b2ad2707d578f06e8cdbfed0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2024Partners:Storm Seeds, Velcourt Ltd, University of Worcester, Limagrin UK, Syngenta +24 partnersStorm Seeds,Velcourt Ltd,University of Worcester,Limagrin UK,Syngenta,LS Plant Breeding (United Kingdom),Velcourt (United Kingdom),LS Plant Breeding Ltd,Syngenta (Switzerland),IAR AGRI Ltd,Birds Eye/Walls Ltd,KWS Saat (Germany),Storm Seeds,Private Address,Senova Ltd,Birds Eye/Walls Ltd,Pulses UK,Elsom Seeds Ltd,Senova Ltd,Limagrin UK,KWS LOCHOW GmbH,Processors&Growers Research Organisation,Private Address,Agriculture and Horticulture Development Board,Pulses UK,University of Worcester,Processors and Growers Research Organisation,AHDB,Elsom Seeds LtdFunder: UK Research and Innovation Project Code: BB/T016043/1Funder Contribution: 403,813 GBPPulses, in particular peas and broad beans, are important crops both in the UK and worldwide and they are grown as extensive monocultures. Even with long rotations, the crops are vulnerable to major epidemics of economically important pests and diseases, of which downy mildews (caused by the oomycete biotrophic pathogens Peronospora viciae f. sp. pisi (Pvp) and P. viciae f. sp. fabae (Pvf) in peas and beans, respectively) are the most serious. Breeding companies are challenged to produce cultivars with new resistance genes and will benefit from access to crop wild relatives carrying new resistance genes. The disease is managed through deployment of resistant varieties and chemical controls; however a lack of information on prevalent isolates can lead to serious yield losses in crops grown on contaminated sites through uninformed variety selection. Although a differential set of plant cultivars is available to identify the virulence genes in pathotypes of Pvp/Pvf, the test is too time-consuming to be of immediate use to commercial growers and does not allow rapid monitoring of the prevailing isolates. In addition, generating a model for pathogen spread is impossible using current methods. The problem is exacerbated by reports of resistance of oomycete pathogens to pesticides such as metelaxhyl. Without adequate control regimes, pea and broad bean production will incur greater crop wastage and it is therefore imperative that methods are developed to decrease growers' reliance on pesticides for the control of downy mildew. Deployment of pulse cultivars resistant to prevailing isolates is the most promising approach. Use of appropriate molecular tools will enable breeders, epidemiologists, modellers and growers to: a) identify the prevailing virulent isolate; b) investigate the epidemics of disease; c) monitor pathogen movement and d) deploy the appropriate cultivar(s) resistant to the prevailing isolate rapidly and thus control the disease in an environmentally friendly and sustainable manner. Accurate advice to growers about resistant cultivars requires correct information on the virulence of Pvp/Pvf races within the locality. However, diagnosing the pathogen at the isolate level requires the right tools. The innovative approach described in this project focuses on the development of molecular tools for accurate identification of Pvp/Pvf isolates as well as for breeding for resistance. We aim to identify new resistance sources to include in breeding programmes and develop molecular markers to enable rapid identification and monitoring of pathogen isolates. We will use next generation sequencing to identify polymorphisms in several isolates. These polymorphisms will then be utilised to generate isolate-specific markers. Once identified, markers will be tested under laboratory conditions and subsequently will also be checked in commercial fields. In addition, we will use biological control agents to control downy mildew disease. These will lead to increased crop productivity, reduced reliance on pesticides and less wastage from diseased plants.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::df2920c3f0570ea1b0013ce7b2e37b19&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::df2920c3f0570ea1b0013ce7b2e37b19&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu