
Polatis (United Kingdom)
Polatis (United Kingdom)
3 Projects, page 1 of 1
assignment_turned_in Project2024 - 2033Partners:TOSHIBA EUROPE LIMITED, Advanced Bionics GmbH, Porotech Ltd, Menhir Photonics, Polatis (United Kingdom) +34 partnersTOSHIBA EUROPE LIMITED,Advanced Bionics GmbH,Porotech Ltd,Menhir Photonics,Polatis (United Kingdom),Printed Eelectronics ltd,TeraView Limited,CAM-XT Solutions Inc,Leonardo (UK),Hamamatsu Photonics (United Kingdom),Lumentum Technology UK Ltd.,European Space Agency,Shimadzu (Japan),IMEC,Precision Acoustics (United Kingdom),Tyndall National Institute,Teratech Components Ltd,Broadcom Corporation,Nu Quantum,Alibaba Group (China),Xtera Communications Limited,DeepColor SAS,Cytiva (UK),aXenic Ltd.,BT plc,PragmatIC (United Kingdom),Adtran,Nokia Bell Labs,Shadow Robot (United Kingdom),Optalysys Ltd,UCL,Photon Design (United Kingdom),Eblana Photonics (Ireland),Airbus Defence and Space Limited,Cambridge Display Technology Ltd (CDT),Waveoptics,QuiX Quantum B.V.,THALES UK LIMITED,Xilinx (Ireland)Funder: UK Research and Innovation Project Code: EP/Y034864/1Funder Contribution: 7,419,550 GBPPhotonics has moved from a niche industry to being embedded in the majority of deployed systems, spanning sensing, biomedical devices and advanced manufacturing, through communications, ranging from chip-to-chip and wireless access to transcontinental scale, to display technologies, bringing higher resolution, lower energy operation and new ways of human-machine interaction. Its combination with electronics enables the Digital Future. The Government's UK Semiconductor Strategy and UK Wireless Infrastructure Strategy both recognise the need for highly trained people to lead developments in these technology areas, the Semiconductor Strategy referring explicitly to the role of CDTs in filling the current shortage of highly trained researchers. Our proposed CDT has been designed to meet this need. Currently manufactured systems are realised by combining separately developed photonics, electronic and wireless components. This approach is labour intensive and requires many electrical interconnects as well as optical alignment on the micron scale. Devices are optimised separately and then brought together to meet systems specifications. Such an approach, although it has delivered remarkable results, not least the communications systems upon which the internet and our Digital Future depends, limits the benefits that could come from systems-led co-design and the development of technologies for seamless integration of photonics, electronics and wireless. Our proposed CDT aims to provide multi-disciplinary training enabling researchers to create the optimally integrated, energy efficient, systems of the future. To realise such integrated systems requires researchers who have not only deep understanding of their specialist area, but also an excellent understanding across this interdisciplinary area ranging across the fields of photonics, electronics and wireless, hardware and software. We aim to meet this important need by building upon the uniqueness and extent of the Cambridge and UCL research programmes, where activities range across materials for future systems; higher levels of electronic, photonic and wireless integration; the convergence of wireless and optical communication systems; combined quantum and classical communication systems; the application of THz and optical low-latency connections in data centres; techniques for high capacity access networks; the substitution of many conventional illumination products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Future systems will increasingly rely on more advanced systems integration, and so the CDT supervisor team includes experts in electronic circuits, wireless systems and enabling software. By drawing these complementary activities together it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required technical expertise, RRI, ES, commercial and business skills to enable the > £24 billion annual turnover UK electronics and photonics manufacturing industry to create the optimised, closely integrated systems of the future. The PES CDT will provide a wide range of learning methods for research students, well beyond that conventionally available, so that they can gain the required skills. In addition to conventional lectures and seminars, for example, there will be bespoke experimental coursework activities, educational retreats, reading clubs, road-mapping activities, RRI and ES studies, secondments to companies and other research laboratories and business and entrepreneurship courses. Students trained by the CDT will be equipped to expand the range of applications into which these technologies are deployed in key sectors of the Digital Futures and wider economy, such as communications, industrial manufacturing, consumer electronics, data processing, defence, energy, engineering, security and medicine.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::113dd8e66d4b153e37eaf0d82b5d301e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::113dd8e66d4b153e37eaf0d82b5d301e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2026Partners:Verizon (United States), Petras Internet of Things Hub, ADVA AG Optical Networking, Sumitomo Electric Industries, Ltd., Deutsche Telekom +53 partnersVerizon (United States),Petras Internet of Things Hub,ADVA AG Optical Networking,Sumitomo Electric Industries, Ltd.,Deutsche Telekom,Eblana Photonics (Ireland),Government of the United Kingdom,Verizon Communications,Dithen Ltd,Oclaro (United Kingdom),Deutsche Telekom (Germany),Huawei Technologies (China),University of Bristol,Corning (United States),Alcatel Submarine Networks,HUBER+SUHNER Polatis Ltd,Arden Photonics,Corning Incorporated,National Institute of Information and Communications Technology,UCL,Xtera Communications Limited,University of Southampton,Microsoft Research (United Kingdom),ARDEN,LANL,Petras Internet of Things Hub,LBNL,Government Office for Science,Polatis (United Kingdom),Ericsson Telecommunication SpA,Deutsche Telekom,University of Leeds,Mitsubishi Electric (United States),Naudit NPCN SL,Government office for science,KDDI R&D Laboratories,Lawrence Livermore National Laboratory,BT Group (United Kingdom),University of Oxford,British Telecommunications plc,BT Group (United Kingdom),Huawei Technologies (China),University of Bristol,KDDI R&D Laboratories (Japan),Ericsson Telecommunication SpA,Mitsubishi Electric,ADVA Optical Networking (Germany),University of Leeds,University of Southampton,Los Alamos National Laboratory,Dithen Ltd,Oclaro Technology UK,Sumitomo Electric Industries (Japan),Alcatel Submarine Networks,Naudit NPCN SL,MICROSOFT RESEARCH LIMITED,Xtera Communications Limited,National Inst of Info & Comm Tech (NICT)Funder: UK Research and Innovation Project Code: EP/R035342/1Funder Contribution: 6,105,920 GBPOptical networks underpin the global digital communications infrastructure, and their development has simultaneously stimulated the growth in demand for data, and responded to this demand by unlocking the capacity of fibre-optic channels. The work within the UNLOC programme grant proved successful in understanding the fundamental limits in point-to-point nonlinear fibre channel capacity. However, the next-generation digital infrastructure needs more than raw capacity - it requires channel and flexible resource and capacity provision in combination with low latency, simplified and modular network architectures with maximum data throughput, and network resilience combined with overall network security. How to build such an intelligent and flexible network is a major problem of global importance. To cope with increasingly dynamic variations of delay-sensitive demands within the network and to enable the Internet of Skills, current optical networks overprovision capacity, resulting in both over- engineering and unutilised capacity. A key challenge is, therefore, to understand how to intelligently utilise the finite optical network resources to dynamically maximise performance, while also increasing robustness to future unknown requirements. The aim of TRANSNET is to address this challenge by creating an adaptive intelligent optical network that is able to dynamically provide capacity where and when it is needed - the backbone of the next-generation digital infrastructure. Our vision and ambition is to introduce intelligence into all levels of optical communication, cloud and data centre infrastructure and to develop optical transceivers that are optimally able to dynamically respond to varying application requirements of capacity, reach and delay. We envisage that machine learning (ML) will become ubiquitous in future optical networks, at all levels of design and operation, from digital coding, equalisation and impairment mitigation, through to monitoring, fault prediction and identification, and signal restoration, traffic pattern prediction and resource planning. TRANSNET will focus on the application of machine techniques to develop a new family of optical transceiver technologies, tailored to the needs of a new generation of self-x (x = configuring, monitoring, planning, learning, repairing and optimising) network architectures, capable of taking account of physical channel properties and high-level applications while optimising the use of resources. We will apply ML techniques to bring together the physical layer and the network; the nonlinearity of the fibres brings about a particularly complex challenge in the network context as it creates an interdependence between the signal quality of all transmitted wavelength channels. When optimising over tens of possible modulation formats, for hundreds of independent channels, over thousands of kilometres, a brute force optimisation becomes unfeasible. Particular challenges are the heterogeneity of large scale networks and the computational complexity of optimising network topology and resource allocation, as well as dynamical and data-driven management, monitoring and control of future networks, which requires a new way of thinking and tailored methodology. We propose to reduce the complexity of network design to allow self-learned network intelligence and adaptation through a combination of machine learning and probabilistic techniques. This will lead to the creation of computationally efficient approaches to deal with the complexity of the emerging nonlinear systems with memory and noise, for networks that operate dynamically on different time- and length-scales. This is a fundamentally new approach to optical network design and optimisation, requiring a cross-disciplinary approach to advance machine learning and heuristic algorithm design based on the understanding of nonlinear physics, signal processing and optical networking.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e3eb8f6161c6ec7a68cd1015576b1041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e3eb8f6161c6ec7a68cd1015576b1041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:Waveoptics, Zinwave, Precision Acoustics (United Kingdom), Continental Automotive GmbH, Thales Group +79 partnersWaveoptics,Zinwave,Precision Acoustics (United Kingdom),Continental Automotive GmbH,Thales Group,Airbus (United Kingdom),Thales (United Kingdom),UCL,Xilinx (Ireland),Huawei Technologies (UK) Co. Ltd,The Rockley Group UK,Phasor Solutions Ltd,Xtera Communications Limited,aXenic Ltd.,Stryker International,MICROSOFT RESEARCH LIMITED,Xilinx (Ireland),Airbus Defence and Space,VividQ,Defence Science and Technology Laboratory,BAE Systems (UK),HUBER+SUHNER Polatis Ltd,Defence Science & Tech Lab DSTL,Inphenix,Eblana Photonics (Ireland),University of Cambridge,Eight19 (United Kingdom),Anvil Semiconductors (United Kingdom),VividQ,PragmatIC (United Kingdom),Zilico Ltd,Photon Design (United Kingdom),Defence Science & Tech Lab DSTL,Precision Acoustics (United Kingdom),Waveoptics,McWane Technology (United Kingdom),Stryker International,Thales Group (UK),PLESSEY SEMICONDUCTORS LIMITED,Huawei Technologies (United Kingdom),Plessey Semiconductors Ltd,Analog Devices,Chromacity Ltd.,FAZ Technology Limited,Zilico Ltd,Toshiba (United Kingdom),TeraView (United Kingdom),Xtera Communications Limited,Anvil Semiconductors Ltd,Continental (Germany),Leonardo MW Ltd,PervasID Ltd,PervasID Ltd,BAE Systems (United Kingdom),PHOTON DESIGN LIMITED,Airbus Defence and Space,Hitachi Cambridge Laboratory,PragmatIC Printing Ltd,Phasor Solutions Ltd,Integer Holdings Corporation,aXenic Ltd.,British Telecommunications plc,Chromacity (United Kingdom),Oclaro (United Kingdom),Analog Devices Inc (Global),BT Group (United Kingdom),BT Group (United Kingdom),FAZ Technology Limited,Huawei Technologies (UK) Co. Ltd,The Rockley Group UK,Microsoft Research (United Kingdom),Teraview Ltd,Polatis (United Kingdom),Inphenix,Optalysys Ltd,Optalysys Ltd,Hitachi Cambridge Laboratory,General Electric (United Kingdom),Integer Holdings Corporation,BAE Systems (Sweden),Eight19 Ltd,Oclaro Technology UK,Teraview Ltd,TRELFunder: UK Research and Innovation Project Code: EP/S022139/1Funder Contribution: 5,695,180 GBPThis proposal seeks funding to create a Centre for Doctoral Training (CDT) in Connected Electronic and Photonic Systems (CEPS). Photonics has moved from a niche industry to being embedded in the majority of deployed systems, ranging from sensing, biophotonics and advanced manufacturing, through communications from the chip-to-chip to transcontinental scale, to display technologies, bringing higher resolution, lower power operation and enabling new ways of human-machine interaction. These advances have set the scene for a major change in commercialisation activity where electronics photonics and wireless converge in a wide range of information, sensing, communications, manufacturing and personal healthcare systems. Currently manufactured systems are realised by combining separately developed photonics, electronic and wireless components. This approach is labour intensive and requires many electrical interconnects as well as optical alignment on the micron scale. Devices are optimised separately and then brought together to meet systems specifications. Such an approach, although it has delivered remarkable results, not least the communications systems upon which the internet depends, limits the benefits that could come from systems-led design and the development of technologies for seamless integration of electronic photonics and wireless systems. To realise such connected systems requires researchers who have not only deep understanding of their specialist area, but also an excellent understanding across the fields of electronic photonics and wireless hardware and software. This proposal seeks to meet this important need, building upon the uniqueness and extent of the UCL and Cambridge research, where research activities are already focussing on higher levels of electronic, photonic and wireless integration; the convergence of wireless and optical communication systems; combined quantum and classical communication systems; the application of THz and optical low-latency connections in data centres; techniques for the low-cost roll-out of optical fibre to replace the copper network; the substitution of many conventional lighting products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Many of these activities will increasingly rely on more advanced systems integration, and so the proposed CDT includes experts in electronic circuits, wireless systems and software. By drawing these complementary activities together, and building upon initial work towards this goal carried out within our previously funded CDT in Integrated Photonic and Electronic Systems, it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required technical expertise, responsible innovation (RI), commercial and business skills to enable the £90 billion annual turnover UK electronics and photonics industry to create the closely integrated systems of the future. The CEPS CDT will provide a wide range of methods for learning for research students, well beyond that conventionally available, so that they can gain the required skills. In addition to conventional lectures and seminars, for example, there will be bespoke experimental coursework activities, reading clubs, roadmapping activities, responsible innovation (RI) studies, secondments to companies and other research laboratories and business planning courses. Connecting electronic and photonic systems is likely to expand the range of applications into which these technologies are deployed in other key sectors of the economy, such as industrial manufacturing, consumer electronics, data processing, defence, energy, engineering, security and medicine. As a result, a key feature of the CDT will be a developed awareness in its student cohorts of the breadth of opportunity available and the confidence that they can make strong impact thereon.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5ca5a8341f366b8cff7b89001dfd3263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5ca5a8341f366b8cff7b89001dfd3263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu