Powered by OpenAIRE graph
Found an issue? Give us feedback

Forest Research

Country: United Kingdom

Forest Research

44 Projects, page 1 of 9
  • Funder: UK Research and Innovation Project Code: NE/X004449/1
    Funder Contribution: 516,524 GBP

    The UK government plans to increase woodland cover as part of its plans to store more carbon, to mitigate climate change. However, many of the UK's trees are threatened by climate change and a range of pests and diseases, which might limit their ability to contribute to carbon storage and the wide range of other benefits delivered by woodlands. We therefore need to make our woodlands resilient to these future threats. Resilience is the ability of a system, such as a woodland, to recover from a disturbance. One commonly proposed approach to increase the resilience of woods is to increase their tree diversity. Thus, spreading the risk amongst many different trees, as we don't know exactly how each tree species will respond to climate change, nor what threats from pests and diseases they may face decades into the future. However, woodland managers have different perceptions of diversity, and how management may best deliver it, and we know that different tree species will support the woodland ecosystem in different ways. Therefore, it is important to combine stakeholders' knowledge with ecological knowledge to identify which tree species and management approaches best deliver diversification that increases resilience. DiversiTree focuses on woods dominated by two conifer species, Scots Pine and Sitka Spruce, as in the year to March 2021 54% of all new woodland was coniferous. Scots Pine is the UK's only native conifer of economic significance. It is planted for timber production but is also the dominant species in the culturally iconic native Caledonian pinewoods. Scots Pine is at risk from the tree disease Dothistroma. Sitka Spruce is not native to Britain but is our most economically valuable tree species and is at risk from invasive bark beetles and climate change. This project addresses four knowledge gaps related to the diversification of woodlands: 1) How do stakeholders understand forest diversity, their diversification strategies, and their visions and ambitions for diverse future forests? 2) Are the microbes found on the leaves of trees more diverse in woodlands with mixed tree species and does this help trees to better defend themselves against diseases? 3) How may diversification of tree species within a wood allow the continued support of woodland biodiversity? 4) How do we implement and communicate management strategies to increase woodland resilience? To address these knowledge gaps, we work across disciplines bringing together ecologists, microbiologists, social scientists, and woodland managers. The Woodland Trust is embedded at the heart of our project to enable us to co-develop and check the feasibility of our results with practitioners. Results from interviews with woodland managers, focus groups and analyses of policy documents, will be used to improve knowledge of the options for woodland diversification, and both the enthusiasm for, and capacity to, implement diversification strategies. The microbes on leaves are important for plant health. Utilizing existing long-term experiments, we will examine the microbes on the leaves of Scots Pine grown in monocultures and in mixed woods. We will assess if the diversity of microbes on a leaf increases as the diversity of tree species increases, and whether this enables the trees to resist existing diseases. Surprising we don't have lists of which species use which trees. This information is required if we are to plant trees that will continue to support woodland biodiversity. We will collate data on the biodiversity hosted by Scots Pine and Sitka Spruce and assess which other tree species could also support the same biodiversity. Finally, we bring the results together to co-develop with practitioners, management strategies for diversification and case studies illustrating how the results can be implemented. The results will be shared via videos, podcasts, social media, and practitioner notes in addition to publications in the scientific literature.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/X017656/1
    Funder Contribution: 40,634 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/T00732X/1
    Funder Contribution: 648,076 GBP

    The proposal presented here is important for quantifying how interfacial chemistry in the atmosphere is important in the assessment of modern climate change. It relies on three aspects of atmospheric science 1) Atmospheric aerosols are tiny solid or liquid particles suspended in air. They arise from human activity (e.g. burning of fossil fuels) and naturally (e.g. breaking ocean waves) and can exist in the atmosphere for minutes to days. These aerosol are a large source of uncertainty when assessing man-made contributions to climate change as they strongly influence (I) the amount of light reflected back to space (potentially cooling the planet) and (II) the formation of clouds, and how much sunlight they reflect back to space (again, potentially cooling the planet). 2) Some of these aerosol have thin films or coatings of organic material. As the size of these aerosol are similar to the wavelength of sunlight a thin coating can significantly alter their ability to scatter and 'reflect' sunlight and their potential to form clouds. 3) The atmosphere effectively acts as a low temperature, dilute fuel, combustion system oxidizing chemicals released from the Earth's surface. The rate at which chemicals released from the Earth's surface can be removed by oxidation is important in understanding the atmosphere's self-cleansing mechanism. Previously *proxies* of thin films on atmospheric aerosol have been shown to potentially alter the light scattering and cloud forming ability of clouds. These proxies have been chosen from a chemical catalogue and do not represent the mixture and variety found in the atmosphere. We will use *real* material extracted from different locations to characterize the thin films formed on real atmospheric aerosol, determine their film thicknesses, light scattering ability and their chemical reactivity in the atmosphere. Our own preliminary work demonstrates that laboratory proxy thin films are not representative of the real atmosphere. The film thicknesses are critical to the calculation of their light scattering ability which in turn is critical to calculation of the proportion of sunlight scattered back to space. The chemical reactivity is important in determining the lifetime of the film, because as the film reacts the optical properties of the particle will change significantly. If the film lifetime is longer than a typical aerosol lifetime then it can be simply included into atmospheric models, but if the film lifetime is much shorter then it may be ignored. However preliminary data suggests it is has a similar lifetime meaning the *changing* light scattering properties of a coated particle will need to be modelled. The project represents the first comprehensive study of atmospheric thin film oxidation and light scattering with real atmospheric matter from the atmosphere. The combined experimental and modelling approach will allow the demonstration of (I) core-shell (thin film behavior) from atmospheric samples, (II) calculation of their optical properties and change in radiative balance at the top of the atmosphere., (III) measurement of atmospheric oxidation rates of the film and inclusion in Co-I led complex aerosol kinetic modelling of complex mixture aerosol. The proposal will also continue to develop two emergent exciting techniques for atmospheric science: Laser trapping with Mie spectroscopy and neutron scattering. The ability of these technique to study films ~10nm thick in real time, with the correct morphology and with unprecedented precision is phenomenal. The proposal will also be an excellent training vehicle for two PDRAS in soft-matter, facility, and atmospheric experimental science with real world modelling of atmospheric outcomes. The data and model systems from this proposed work will be ready for including global climate models. The letters os support demonstrate that ends users for some off data with the Met. office(UK) and MPIC (Germany).

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/F021437/1
    Funder Contribution: 239,406 GBP

    Knowledge of carbon distribution stored within vegetation is an important factor necessary for reporting changes in carbon stock and recognised in international agreements such as the Kyoto Protocol to the United Nations Framework Convention on Climate Change 1997. Quantifying tree volume is also of great importance for forest management to monitor stand performance and assess commercial potential. Additionally, the vertical structure of vegetation can provide useful information regarding the quality of woodlands as species habitats. Satellite-derived optical data can provide a two-dimensional perspective of land class distribution and therefore permits the delineation of forests and stands according to the reflective properties for large areas. However, estimates to quantify vegetation from optical data rely on indirect assumptions based on its reflectivity at different wavelengths. Light Detection and Ranging (LiDAR) provides a direct means of estimating vegetation height, vertical profile, volume and canopy cover using the structural properties of the vegetation itself. Full waveform LiDAR uses the ability for laser pulses, emitted from terrestrial, airborne or satellite platforms, to penetrate gaps between vegetation foliage. Energy is reflected and returned to the sensor from all intercepted surfaces within the illuminated area (footprint), meaning that the returned waveform represents both the canopy structure and surface topography. The time taken for the returned energy to be detected at the sensor can be converted into distance using the speed of light which allows elevation differences between the intercepted surfaces to be calculated, therefore providing a vertical canopy profile. The Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud and land Elevation Satellite (ICESat) provides near global coverage three times annually, sampling the Earth's surface using approximately 64 metre diameter LiDAR footprints. This innovative satellite therefore offers an unprecedented opportunity for seasonal biophysical parameter retrieval at regional to global scales. As part of the the National Forest Inventory, land cover maps identifying forested areas will be produced by the Forestry Commission during the course of this research. These will be used to define areas of Interpretive Forest Types (i.e. broad vegetation classes including conifers, broadleaves, newly planted stands, etc.) which will be further segmented into species classes using optical remotely sensed data. Returned LiDAR waveforms will then be used for sample plots of these classes to establish relationships with important forest parameters used in vegetation analysis. These will include direct relationships with vegetation height profile, canopy cover and stemwood volume as well as the indirect estimation of parameters used in forestry applications such as mean diameter distribution and basal area. These models will then be used to extend the estimates across classified areas leading to the production of a nation-wide cartographic product. This is be of particular interest for forest inventory purposes as, whilst comprehensive information is available relating to public woodland, this is not the case for privately owned land. As private land accounts for 60% of Britain's woodlands and 80% of timber production, methods of validating estimates of vegetation parameters for these areas would serve to reduce uncertainty in carbon accounting. Furthermore, the three/dimensional perspective of this product would allow habitat structure to be related to land cover type and species distribution for a more comprehensive analysis of habitat properties and fragmentation. Vertical vegetation structure can also be used to better understand ecosystem fluxes and the effects of humans and the environment on these.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G036608/1
    Funder Contribution: 6,550,560 GBP

    There are major challenges inherent in meeting the goals of the UK national energy policy, including, climate change mitigation and adaption, security of supply, asset renewal, supply infrastructure etc. Additionally, there is a recognized shortage of high quality scientists and engineers with energy-related training to tackle these challenges, and to support the UK's future research and development and innovation performance as evidenced by several recent reports;Doosan Babcock (Energy Brief, Issue 3, June 2007, Doosan Babcock); UK Energy Institute (conducted by Deloitte/Norman Broadbent, 'Skills Needs in the Energy Industry' 2008); The Institution of Engineering and Technology, (evidence to the House of Commons, Select Committee on Innovation, Universities, Science and Skills Fifth Report (19th June 2008); The Energy Research Partnership (Investigation into High-level Skills Shortages in the Energy Sector, March 2007). Here we present a proposal to host a Doctoral Training Centre (DTC) focusing on the development of technologies for a low carbon future, providing a challenging, exciting and inspiring research environment for the development of tomorrow's research leaders. This DTC will bring together a cohort of postgraduate research students and their supervisors to develop innovative technologies for a low carbon future based around the key interlinking themes: [1] Low Carbon Enabling Technologies; [2] Transport & Energy; [3] Carbon Storage, underpinned by [4] Climate Change & Energy Systems Research. Thereby each student will develop high level expertise in a particular topic but with excitement of working in a multidisciplinary environment. The DTC will be integrated within a campus wide Interdisciplinary Institute which coordinates energy research to tackle the 'Grand Challenge' of developing technologies for a low carbon future, our DTC students therefore working in a transformational research environment. The DTC will be housed in a NEW 14.8M Energy Research Building and administered by the established (2005) cross campus Earth, Energy & Environment (EEE) University Interdisciplinary Institute

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.