Powered by OpenAIRE graph
Found an issue? Give us feedback

UBO

Université de Bretagne Occidentale
72 Projects, page 1 of 15
  • Funder: French National Research Agency (ANR) Project Code: ANR-18-CE33-0015
    Funder Contribution: 444,422 EUR

    The VR-MARS project represents a support system for urgent healthcare delivery in isolated environments, based on virtual reality and embodied conversational agents (ECA). We hypothesize that these two technologies enable better situational awareness and care coordination between 3 parties: a care provider in an isolated location, a critically ill patient and the control centre on Earth. VR-MARS explore the scientific fields of emergency medicine, human factors and virtual reality. The use case of VR-MARS will be related to space medicine, in particular emergency care during a manned spaceflight to Mars. During these missions, temporal isolation will add to physical isolation, because of delays in communication between the care provider (on Mars) and ground control (on Earth), which will preclude real-time telemedical support. VR-MARS will be built around two simultaneous decision loops which will allow task assignment and synchronisation between the care provider, the ECA and ground control. The ECA will interact with the care provider via augmented reality. Upon request, it will deliver step-by-step guidance on medical protocols, using reassuring verbal tone and cues in order to mitigate the stress of the care providers. As soon as it is available, ground control on Earth will be made aware of the situation on Mars and of the procedures being undertaken by the care provider. This will improve situational awareness on the ground and enable the most optimal decision making in the mid- to long-term. In return, ground control will deliver its recommendation to the care provider via the ECA. Therefore, the ECA will represent the central hub of communication between the two sites. VR-MARS will be tested on two medical scenarios involving a critically ill patient represented by a high-fidelity simulator. Technical and non-technical skills of the care provider will be assessed at two levels: immediate interactions between the care provider and the ECA (for urgent, life-saving decisions) and delayed interactions between the care provider and ground control (for mid- and long-term decisions). With regards to research output and spinoffs, we anticipate that VR-MARS will improve medical care in remote environments, such as humanitarian missions, the combat environment, medical evacuations, expedition medicine, etc.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-21-CE50-0034
    Funder Contribution: 569,819 EUR

    MARCEL 2.0 proposes an original concept where metallic nanocatalysts (Au, Ag, Cu nanoparticles) are functionalized with molecular hosting cavities bearing metallic complexes in order to direct the reactivity in ORR and CO2RR electrocatalysis. Both of these processes are complex and require efficient and highly selective catalysts as the metalloenzymes. Inspired form such biological systems whose functioning is based on confinement and supramolecular effects, MARCEL seeks the rational control of forming and stabilizing intermediates to guide specific reaction pathways. This innovative design that relies on surface supramolecular effects will be further combined to plasmonic effect in order to enhance the electrocatalytic performance. The reactivity and interfacial phenomena will be thoroughly investigated by combining experimental (electrochemistry, in situ spectroscopies) and computational analyses.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-23-CE40-0008
    Funder Contribution: 360,134 EUR

    This project focuses on various aspects of branching processes in fixed, variable or random environments, whether they are single-type or multitype. We propose to identify the limit of Bienaymé-Galton-Watson trees conditioned by their total population through their coding by multi-indexed and matrix-valued random walks. Then we will study the problem of the extinction of a part of the population for continuous multitype branching processes. We will construct the continuous analogue of multitype Bienaymé-Galton-Watson trees. These continuous random trees will then be obtained in the stable case as scaling limits of the renormalized discrete trees. These continuous random trees will be associated with continuous multi-type branching processes. We will also study discrete-time multitype branching processes in random environments to obtain asymptotic properties of the corresponding population size and survival probability; in particular, the problems of large deviations and asymptotic normalization will be considered. To this end, we will first deepen the study of the products of random matrices, in particular through the study of the multidimensional processes corresponding to the linear action of these products of matrices. We will be particularly interested in the cases where these processes are conditioned to remain in a cone of the Euclidean space. We will then establish limit theorems (invariance principle, local limit theorem, ...) for these conditioned processes. We will finally focus on the fundamental branching martingale associated to these Bienaymé-Galton-Watson trees, defined from the corresponding products of random matrices.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-19-FQSM-0002
    Funder Contribution: 359,532 EUR
    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-21-ASTR-0004
    Funder Contribution: 299,307 EUR

    Current civilian and military aircrafts and flying systems (e.g. UAVs) are designed from thin, lightweight, multi-material structures assembled by bolting, gluing or built-on fabrication. Due to their constitution, these structures are vulnerable to explosion phenomena that occur on their surface during a natural aggression such as lightning, or intentional aggression such as Directed Energy Weapons (DEA) or lasers. These aggressions are governed by multiphysical mechanisms in the environment close to the impacted surface (thermal, mechanical, electrical, EM). They generate superficial (top plies cracks, skeins of stripped fibres) or core damage (spalling, perforation). The residual performances of the structures are significantly diminished and the internal equipment (tanks, embedded systems) are exposed. It is necessary to protect these systems to limit their vulnerability. The objectives of the project SUSTAINED21 are in line with the civilian and military needs whose systems are susceptible to these different types of aggression, in order to envisage industrial solutions with high added value that will increase their survivability. The challenges arising from these applications are to have available a method for dimensioning the protection of structures that breaks with the current industrial practices, and contribute to the operational superiority of forces. The first objective of this study is to build an experimental database and a mapping of the damage induced by three different means of energy deposition: the lightning mean (which constitutes the reference test), the pulsed laser and the electron gun. The use of this damage mapping will make it possible to assess the similarities between the damage produced by the two alternative means with respect to the "lightning" reference test, the results of which are already available on CFRP composites. It will also ensure that they are representative, particularly with respect to the electromagnetic environment. By extension, this database can be used to compare damage from impacts at very high speeds. The second objective consists in numerically simulating the behaviour of the materials of interest under attack in order to evaluate the capability to predict the damage caused and to identify the limits of current models, particularly with regard to the application of a multiphysical loading. The achievement of this objective will be based on the adaptation of existing models and on the comparison with the mapping of the database. The third objective is to establish a methodology for using the technological bricks developed in objectives 1 and 2. The influence of the protective layers will be explored here in order to help, in the long term, the emergence of a tool for dimensioning protections. This predictive approach will be transposable to the military field for the dimensioning of future directed-energy weapons according to the layers of protection to be penetrated. This approach will satisfy the challenges for industry to reduce the costs of development studies, the most robust protections being the only ones subjected to certification/qualification lighting tests, the lightning generator being used as the final reference mean. The project is based on a partnership between an academic project leader who has worked on the modelling of damage caused by lightning, an academic partner specialized in the implementation of an experimental laser shock device, and an industrial partner expert in specifying protection layers. The proposed work involves a subcontractor in the SME sector with know-how in the implementation and analysis of laser shocks, and will be supported by DGA-Ta as the expert in lightning tests certification. The work is part of the continuity of collaborations and scientific partnerships with the DGA-Ta in Toulouse and Airbus Operation. Being interested in this field, DGA Missiles Testing SG will be able to offer its support.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.