
PLEIONE ENERGY GMBH
PLEIONE ENERGY GMBH
1 Projects, page 1 of 1
Open Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2027Partners:Sapienza University of Rome, UNIVERSITE GUSTAVE EIFFEL, COMSENSUS D.O.O., NTT, FOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS +6 partnersSapienza University of Rome,UNIVERSITE GUSTAVE EIFFEL,COMSENSUS D.O.O.,NTT,FOUNDATION FOR RESEARCH AND TECHNOLOGYHELLAS,DLR,ADAMANT COMPOSITES E.P.E.,Born GmbH,AUSTRALO INTERINNOV MARKETING LAB SL,EUGLOTTIA SINGLE MEMBER PERSONAL COMPANY,PLEIONE ENERGY GMBHFunder: European Commission Project Code: 101120832Overall Budget: 4,499,330 EURFunder Contribution: 4,499,330 EURGRAPHERGIA aims is to develop a new science-based, holistic approach, implementing new advances to achieve one-step, laser-assisted synthesis, processing, functionalization and simultaneous integration of graphene-based materials and graphene nanohybrids, directly into relevant energy harvesting/storage devices. This will lead to a scalable, cost-effective and climate-neutral production of (i) e-textiles with the specific functions of wearable power supplying and self-powered structural sensors and (ii) next generation electrodes for Li-ion batteries. Based on current TRL 3-4 activities, the consortium explores novel ideas for 2D materials engineering and integration at TRL 5 or higher, establishing versatile pilot-scale-based approaches for these two types of applications. Configurations of TENG-based e-textiles will be prepared to fabricate flexible architectures, designed to sustainably convert energy from the environment to electricity. Laser-scribed solid-state micro-flexible supercapacitors, will be coupled to TENGs, via innovative power management circuits, acting as energy reservoirs to provide on-demand batteryless charging to wearable devices and sensors. All-in-one, self-charging power textiles with integrated electronic systems will provide a human-body-centric technology and interface of the user to the IoT by wireless transmission of sensors’ signals. In parallel, GRAPHERGIA defines a credible “dry electrode” approach to fabricate next generation electrodes for Li-ion batteries aspiring to reach the technical/economic targets of the 2030 European SET-plan. The proposed methodology will be implemented by blending recently devised IPR-protected technologies of consortium partners. To achieve these targets, a combined 2D materials and process-oriented approaches will be adopted, based on low-cost raw materials and inherently scalable fabrication approaches to ensure a cost-effective and climate-neutral production of energy harvesting and storage devices.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::465ecd4ae7abeb03c1fc3a693fa23706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::465ecd4ae7abeb03c1fc3a693fa23706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu