
Peel Ports Group
Peel Ports Group
3 Projects, page 1 of 1
assignment_turned_in Project2008 - 2012Partners:Lloyds Register EMEA, ABS Consulting, Lloyds Register EMEA, LJMU, Peel Ports Group +8 partnersLloyds Register EMEA,ABS Consulting,Lloyds Register EMEA,LJMU,Peel Ports Group,CMA CGM UK Shipping Ltd,Mersey Maritime Limited,Liverpool John Moores University,ABS Consulting,Peel Ports Group,CMA CGM UK Shipping Ltd,Lloyd's Register Foundation,Mersey Maritime LtdFunder: UK Research and Innovation Project Code: EP/F024436/1Funder Contribution: 247,354 GBPOver the past several years, there has been a growing international recognition that security and risk issues of marine systems such as container line supply chains (CLSCs) need to be reviewed urgently. Serious accidents such as the 9/11 terrorist attacks in 2001, the lock-out of the American West Coast Ports in 2002, the blast on the Madrid commuter trains in 2004 and the blast on the London commuter buses and underground trains in 2005 have shocked the whole international shipping and logistics supply industries and prompted this urgency. CLSCs, with many complex physical and information flows, have not only contributed to economic prosperity but also rendered themselves uniquely vulnerable to many risks ranging from delay of cargo delivery to environmental pollution and from terrorist attacks to damage of economic stability. Security is becoming one of the most important criteria for measuring the performance of the design, control and management of marine systems. The term security may in general be defined as freedom from vulnerability which is an exposure to serious disturbances arising from threats. In this research, risks associated with threats will be referred to as security risks. Whilst conventional hazard-based risk is a combination of the probability of occurrence of an undesirable event and the degree of its possible consequences, security risks are different from hazard-based risks and need to be modelled differently. As a result, security and risk assessment is a process of analysing both threats and hazards in a system and making respective decisions on suitable strategies against the potential vulnerability of the system. Previous research in this and related areas has greatly increased our understanding of vulnerability, risks, threats and hazards. However, few studies have generated appropriate supporting tools for security and risk studies in CLSCs from both the engineering and managerial viewpoints. This project is aimed at developing a security and risk-based framework and also assessment models suitable for marine operations. To achieve this aim, several challenging research questions need to be investigated. First of all, most relationships among different security and risk variables may emerge at a variety of spatial, temporal or functional scales, which might be better represented if each relationship were described at or between the dynamic and interactive levels of detail, rather than treating static and steady scale processes identically. In this project, a novel hybrid reasoning network combining Bayesian networks, fuzzy sets and evidential reasoning, referred to as the ER-RN model, will be developed in order to estimate the occurrence likelihoods of threats and hazards in CLSCs. Secondly, information for security and risk assessment in CLSCs is inherently uncertain, caused by imperfect understanding of the domain of a CLSC, incomplete knowledge about the state of the domain, randomness in the mechanisms governing the behaviour of the domain, or a combination of them. It is therefore a great challenge to handle such uncertain information. In this project, a novel belief rule based (BRB) system approach will be investigated in order to use such uncertain information for estimating risks associated with both threats and hazards by modelling the damage capability, recall difficulty and damage probability of threats as well as the possible consequences of hazards. Thirdly, the assessment of security and risk control measures (SRCMs) requires the simultaneous consideration of multiple criteria such as system risk, the costs of implementing a SRCM and the benefits from reduced risk and cargo transfer delay. In this research, a multiple attribute decision-making method will be developed, which can process various types of information with uncertainty generated from the proposed ER-RN and BRB models. Case studies will be conducted to demonstrate the proposed network, models and analysis methods.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f2dc4e75f03f65b7d0243b81c436a6ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f2dc4e75f03f65b7d0243b81c436a6ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2012Partners:CMA CGM UK Shipping Ltd, University of Manchester, Lloyds Register EMEA, Mersey Maritime Limited, ABS Consulting +9 partnersCMA CGM UK Shipping Ltd,University of Manchester,Lloyds Register EMEA,Mersey Maritime Limited,ABS Consulting,Peel Ports Group,The University of Manchester,CMA CGM UK Shipping Ltd,ABS Consulting,Mersey Maritime Ltd,University of Salford,Lloyd's Register Foundation,Lloyds Register EMEA,Peel Ports GroupFunder: UK Research and Innovation Project Code: EP/F024606/1Funder Contribution: 315,557 GBPOver the past several years, there has been a growing international recognition that security and risk issues of marine systems such as container line supply chains (CLSCs) need to be reviewed urgently. Serious accidents such as the 9/11 terrorist attacks in 2001, the lock-out of the American West Coast Ports in 2002, the blast on the Madrid commuter trains in 2004 and the blast on the London commuter buses and underground trains in 2005 have shocked the whole international shipping and logistics supply industries and prompted this urgency. CLSCs, with many complex physical and information flows, have not only contributed to economic prosperity but also rendered themselves uniquely vulnerable to many risks ranging from delay of cargo delivery to environmental pollution and from terrorist attacks to damage of economic stability. Security is becoming one of the most important criteria for measuring the performance of the design, control and management of marine systems. The term security may in general be defined as freedom from vulnerability which is an exposure to serious disturbances arising from threats. In this research, risks associated with threats will be referred to as security risks. Whilst conventional hazard-based risk is a combination of the probability of occurrence of an undesirable event and the degree of its possible consequences, security risks are different from hazard-based risks and need to be modelled differently. As a result, security and risk assessment is a process of analysing both threats and hazards in a system and making respective decisions on suitable strategies against the potential vulnerability of the system. Previous research in this and related areas has greatly increased our understanding of vulnerability, risks, threats and hazards. However, few studies have generated appropriate supporting tools for security and risk studies in CLSCs from both the engineering and managerial viewpoints. This project is aimed at developing a security and risk-based framework and also assessment models suitable for marine operations. To achieve this aim, several challenging research questions need to be investigated. First of all, most relationships among different security and risk variables may emerge at a variety of spatial, temporal or functional scales, which might be better represented if each relationship were described at or between the dynamic and interactive levels of detail, rather than treating static and steady scale processes identically. In this project, a novel hybrid reasoning network combining Bayesian networks, fuzzy sets and evidential reasoning, referred to as the ER-RN model, will be developed in order to estimate the occurrence likelihoods of threats and hazards in CLSCs. Secondly, information for security and risk assessment in CLSCs is inherently uncertain, caused by imperfect understanding of the domain of a CLSC, incomplete knowledge about the state of the domain, randomness in the mechanisms governing the behaviour of the domain, or a combination of them. It is therefore a great challenge to handle such uncertain information. In this project, a novel belief rule based (BRB) system approach will be investigated in order to use such uncertain information for estimating risks associated with both threats and hazards by modelling the damage capability, recall difficulty and damage probability of threats as well as the possible consequences of hazards. Thirdly, the assessment of security and risk control measures (SRCMs) requires the simultaneous consideration of multiple criteria such as system risk, the costs of implementing a SRCM and the benefits from reduced risk and cargo transfer delay. In this research, a multiple attribute decision-making method will be developed, which can process various types of information with uncertainty generated from the proposed ER-RN and BRB models. Case studies will be conducted to demonstrate the proposed network, models and analysis methods.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4c818eac6b3efc350d8ee43f02ddc669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4c818eac6b3efc350d8ee43f02ddc669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2026Partners:Centre for Env Fisheries Aqua Sci CEFAS, Evolve Hydrogen, Opportunity North East, Offshore Renewable Energy Catapult, The Oil and Gas Technology Centre Ltd +57 partnersCentre for Env Fisheries Aqua Sci CEFAS,Evolve Hydrogen,Opportunity North East,Offshore Renewable Energy Catapult,The Oil and Gas Technology Centre Ltd,Equinor,TFP Hydrogen Products Limited,Scottish Power Retail,Siemens Gamesa,Health and Safety Executive (HSE),Orion Energy Hub,BP (United Kingdom),CEFAS,Opportunity North East,D2N2 Local Enterprise Partnership,Equinor (Norway),Hydrogen Power Generation Solutions Ltd,MABE,Equinor,University of Strathclyde,TFP Hydrogen Products Limited,BP International Limited,ENI energy company,Centre for Environment, Fisheries and Aquaculture Science,Evolve Hydrogen,Health and Safety Executive,SAMS,ITM POWER PLC,OFFSHORE RENEWABLE ENERGY CATAPULT,National Grid ESO,UK Mainstream Renewable Power (replace),TechnipFMC plc (UK),TechnipFMC plc (UK),EDF Renewables UK,ITM Power plc,ITM Power (United Kingdom),EI,Siemens Gamesa,HSL,Orsted,EDF Renewables UK,University of Strathclyde,Eneus Energy,Offshore Renewable Energy Catapult,Peel Ports Group,D2N2 Local Enterprise Partnership,Orion Energy Hub,Det Norske Veritas DNV GL UK Limited,Det Norske Veritas DNV GL UK Limited,MABE,Scottish Association For Marine Science,Scottish Power (United Kingdom),ENI energy company,National Grid ESO,Orsted (UK),UK Mainstream Renewable Power (replace),Energy Institute,BP INTERNATIONAL LIMITED,Scottish Power Retail,Hydrogen Power Generation Solutions Ltd,Eneus Energy,Peel Ports GroupFunder: UK Research and Innovation Project Code: EP/W005212/1Funder Contribution: 1,783,050 GBPThe Ocean-REFuel project brings together a multidisciplinary, world-leading team of researchers to consider at a fundamental level a whole-energy system to maximise ocean renewable energy (Offshore wind and Marine Renewable Energy) potential for conversion to zero carbon fuels. The project has transformative ambition addressing a number of big questions concerning our Energy future: How to maximise ocean energy potential in a safe, affordable, sustainable and environmentally sensitive manner? How to alleviate the intermittency of the ocean renewable energy resource? How ocean renewable energy can support renewable heat, industrial and transport demands through vectors other than electricity? How ocean renewable energy can support local, national and international whole energy systems? Ocean-REFuel is a large project integrating upstream, transportation and storage to end use cases which will over an extended period of time address these questions in an innovative manner developing an understanding of the multiple criteria involved and their interactions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::70a5a1c5482dd69b922ce0a04b895719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::70a5a1c5482dd69b922ce0a04b895719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu