Powered by OpenAIRE graph
Found an issue? Give us feedback

Lhasa Limited

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/X021033/1
    Funder Contribution: 1,589,770 GBP

    The switch from traditional organic solvents, many of which are hazardous, volatile or non-sustainable, to modern green solvents is one of the key sustainability objectives in High Value Chemical Manufacture. Currently, the use of green solvents is often explored at process development stage, instead of discovery stage. This necessitates re-optimisation of processes, due to changes in yield, selectivity, impurity profile and purification. These lead to longer development time, cost, and additional uncertainty. On the other hand, selecting the right solvent early may enhance chemoselectivity, avoid additional reaction steps, and simplify purification of the products. Predicting these changes is an important underpinning capability for wider adaptation of green solvents in manufacturing. Unfortunately, the scarcity of reaction data in green solvents is a key obstacle in developing this capability. Thus, there is an urgent need for ML models which predict reactivity in green solvents based on available data in traditional solvents. In addition to addressing the short time-scale of early-stage process development, these will increase the confidence in utilising green solvents at discovery stage, support sophisticated synthetic routes planning tools which takes into account side products, impurity and purification methods, and act as valuable regulatory tools for assessing hazardous impurities. This project will address these challenges through the following objectives: O1 Addressing the scarcity of reactivity data in the literature through curation of reaction data with reliable reaction time and inclusion of rate laws. O2 Developing solvent-dependent reactivity and reaction selectivity prediction models for green solvents. O3 Producing a set of standard substrates based on cheminformatics analysis of industrially relevant reactions and collecting their reactivity data in green solvents. These outputs will have transformative impacts in the chemical manufacture industry, delivering rapid, more sustainable and better quality-controlled processes through shorter development time, and confidence in predicting reaction outcomes in green solvents. The project will be carried out with support from industrial partners working in the field of cheminformatics and AI/Machine learning, e.g. Lhasa Ltd. and Molecule One. Its outputs will be guided and exploited by partners who are end-users in the High Value Chemical Manufacturing sectors: AstraZeneca, CatSci, and Concept Life Science.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015552/1
    Funder Contribution: 4,544,990 GBP

    Moore's Law states that the number of active components on an microchip doubles every 18 months. Variants of this Law can be applied to many measures of computer performance, such as memory and hard disk capacity, and to reductions in the cost of computations. Remarkably, Moore's Law has applied for over 50 years during which time computer speeds have increased by a factor of more than 1 billion! This remarkable rise of computational power has affected all of our lives in profound ways, through the widespread usage of computers, the internet and portable electronic devices, such as smartphones and tablets. Unfortunately, Moore's Law is not a fundamental law of nature, and sustaining this extraordinary rate of progress requires continuous hard work and investment in new technologies most of which relate to advances in our understanding and ability to control the properties of materials. Computer software plays an important role in enhancing computational performance and in many cases it has been found that for every factor of 10 increase in computational performance achieved by faster hardware, improved software has further increased computational performance by a factor of 100. Furthermore, improved software is also essential for extending the range of physical properties and processes which can be studied computationally. Our EPSRC Centre for Doctoral Training in Computational Methods for Materials Science aims to provide training in numerical methods and modern software development techniques so that the students in the CDT are capable of developing innovative new software which can be used, for instance, to help design new materials and understand the complex processes that occur in materials. The UK, and in particular Cambridge, has been a pioneer in both software and hardware since the earliest programmable computers, and through this strategic investment we aim to ensure that this lead is sustained well into the future.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S024093/1
    Funder Contribution: 5,637,180 GBP

    Building upon our existing flagship industry-linked EPSRC & MRC CDT in Systems Approaches to Biomedical Science (SABS), the new EPSRC CDT in Sustainable Approaches to Biomedical Science: Responsible and Reproducible Research - SABS:R^3 - will train a further five cohorts, each of 15 students, in cutting-edge systems approaches to biomedical research and, uniquely within the UK, in advanced practices in software engineering. Our renewed goal is to bring about a transformation of the research culture in computational biomedical science. Computational methods are now at the heart of biomedical research. From the simulation of the behaviour of complex systems, through the design and automation of laboratory experiments, to the analysis of both small and large-scale data, well-engineered software has proved capable of transforming biomedical science. Biomedical science is therefore dependent as never before on research software. Industries reliant on this continued innovation in biomedical science play a critical role in the UK economy. The biopharmaceutical and medical technology industrial sectors alone generate an annual turnover of over £63 billion and employ 233,000 scientists and staff. In his foreword to the 2017 Life Sciences Industrial Strategy, Sir John Bell noted that, "The global life sciences industry is expected to reach >$2 trillion in gross value by 2023... there are few, if any, sectors more important to support as part of the industrial strategy." The report identifies the need to provide training in skills in "informatics, computational, mathematical and statistics areas" as being of major concern for the life sciences industry. Over the last 9 years, the existing SABS CDT has been working with its consortium of now 22 industrial and institutional partners to meet these training needs. Over this same period, continued advances in information technology have accelerated the shift in the biomedical research landscape in an increasingly quantitative and predictive direction. As a result, computational and hence software-driven approaches now underpin all aspects of the research pipeline. In spite of this central importance, the development of research software is typically a by-product of the research process, with the research publication being the primary output. Research software is typically not made available to the research community, or even to peer reviewers, and therefore cannot be verified. Vast amounts of research time is lost (usually by PhD students with no formal training in software development) in re-implementing already-existing solutions from the literature. Even if successful, the re-implemented software is again not released to the community, and the cycle repeats. No consideration is made of the huge benefits of model verification, re-use, extension, and maintainability, nor of the implications for the reproducibility of the published research. Progress in biomedical science is thus impeded, with knock-on effects into clinical translation and knowledge transfer into industry. There is therefore an urgent need for a radically different approach. The SABS:R^3 CDT will build on the existing SABS Programme to equip a new generation of biomedical research scientists with not only the knowledge and methods necessary to take a quantitative and interdisciplinary approach, but also with advanced software engineering skills. By embedding this strong focus on sustainable and open computational methods, together with responsible and reproducible approaches, into all aspects of the new programme, our computationally-literate scientists will be equipped to act as ambassadors to bring about a transformation of biomedical research.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.