Powered by OpenAIRE graph
Found an issue? Give us feedback

RenewableUK

Country: United Kingdom
7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/S023801/1
    Funder Contribution: 6,732,970 GBP

    This proposal is for a new EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems and Structures (CDT-WAMSS) which joins together two successful EPSRC CDTs, their industrial partners and strong track records of training more than 130 researchers to date in offshore renewable energy (ORE). The new CDT will create a comprehensive, world-leading centre covering all aspects of wind and marine renewable energy, both above and below the water. It will produce highly skilled industry-ready engineers with multidisciplinary expertise, deep specialist knowledge and a broad understanding of pertinent whole-energy systems. Our graduates will be future leaders in industry and academia world-wide, driving development of the ORE sector, helping to deliver the Government's carbon reduction targets for 2050 and ensuring that the UK remains at the forefront of this vitally important sector. In order to prepare students for the sector in which they will work, CDT-WAMSS will look to the future and focus on areas that will be relevant from 2023 onwards, which are not necessarily the issues of the past and present. For this reason, the scope of CDT-WAMSS will, in addition to in-stilling a solid understanding of wind and marine energy technologies and engineering, have a particular emphasis on: safety and safe systems, emerging advanced power and control technologies, floating substructures, novel foundation and anchoring systems, materials and structural integrity, remote monitoring and inspection including autonomous intervention, all within a cost competitive and environmentally sensitive context. The proposed new EPSRC CDT in Wind and Marine Energy Systems and Structures will provide an unrivalled Offshore Renewable Energy training environment supporting 70 students over five cohorts on a four-year doctorate, with a critical mass of over 100 academic supervisors of internationally recognised research excellence in ORE. The distinct and flexible cohort approach to training, with professional engineering peer-to-peer learning both within and across cohorts, will provide students with opportunities to benefit from such support throughout their doctorate, not just in the first year. An exceptionally strong industrial participation through funding a large number of studentships and provision of advice and contributions to the training programme will ensure that the training and research is relevant and will have a direct impact on the delivery of the UK's carbon reduction targets, allowing the country to retain its world-leading position in this enormously exciting and important sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M014738/1
    Funder Contribution: 795,262 GBP

    Wave and tidal energy devices are subjected to normal everyday loadings and abnormal extreme loadings. Extreme loadings are severe and less frequent. The repetitive loadings arising from wave-device interaction or current-blade-structure interaction are lower and occur very frequently in normal operation. Economic designs that will survive have to withstand, without structural failure, a combination of these types of loading over the design life of the device and its subsystems. Cumulative fatigue damage in the wave or turbulent-current environment could occur earlier than anticipated in the life of wave or tidal current technologies and needs to be better understood to predict wear-out or failure and ensure designs are robust without entailing excessive cost. This work will explore numerically through computer modelling, and physically through preliminary model- and sea-testing, the interaction of tidal and wave devices with their sea that surrounds them, one another, their moorings and the electricity network to understand the cyclic and irregular forces acting and the structural loadings arising, ultimately aiming to reduce fatigue effects and increase reliability.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N01765X/1
    Funder Contribution: 99,062 GBP

    Ambitious plans for the large-scale deployment of wave and tidal energy are underway to meet carbon reduction targets, with the deployment of 1.6GW of generation planned for the Pentland Firth and Orkney Waters (PFOW), and smaller deployments planned off the coast of Wales and Isle of Wight. In parallel, numerous wave and tidal energy technologies are under development by companies ranging from small embryonic SMEs to multinational engineering companies, whilst test sites, including the European Marine Energy Centre (EMEC) have been established, seabed leases awarded by the Crown Estate, and the deployment of the first, small scale, arrays of devices underway. Amongst this race to develop technology and sites, concerns regarding potential interactions between wave and tidal energy devices/developments and marine mammals, seabirds and fish have emerged. These have formed the basis for the NERC/Defra Understanding How Marine Renewable Device Operations Influences Fine Scale Habitat Use and Behaviour of Marine Vertebrates (RESPONSE) (NE/J004251/1; NE/J000884/1). The study has provided new multi-disciplinary perspectives of the issue, from field studies investigating potential interactions, to the risk management challenges it poses across the wave and tidal sector. The project will directly address the challenges associated with potential marine vertebrate interactions by translating the new emerging evidence and lessons learned from the RESPONSE, FLOWBEC and MREKEP risk and uncertainty study, to inform decision-making on this potentially significant risk to the development of the wave and tidal energy sector. Through direct engagement with a community of stakeholders, incorporating device and site developers, regulators, advisory bodies, NGOs and industry associations, the embedding of this evidence in site scoping, technology design, monitoring, mitigation and consenting processes will be a practical outcome of this work.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/L002728/1
    Funder Contribution: 80,798 GBP

    The wind energy sector is an industry of strategic national importance, which can help secure our energy supplies, reduce our emissions and dependence on imported fossil fuels, and protect our environment. It is an industry on which our clean energy future rests. Despite the positive benefits of wind farms however, there is concern and uncertainty over the possible negative effects wind turbines may have on the environment, particularly on birds. For example, uncertainty remains over collision mortality i.e. the number of birds killed directly through collision with wind turbines. These uncertainties are far from trivial for the industry and have real consequences, potentially delaying wind farm projects and inhibiting the ability of the UK to meet its binding 2020 targets. Three projects in Round 2 of wind farm developments in the UK were delayed by over three years due in part to uncertainties over the assessment of impacts. Therefore better quantification of the uncertainty and variability associated with the estimation of impacts is required. During Environmental Impact Assessments of wind farm developments, bird collision mortality is estimated using a mathematical model which describes the interaction of a bird with a wind turbine and predicts the risks of bird collisions with turbines. There are a limited number of collision risk models in use, not only in the UK but globally. However, it is recognised by many, including industry, statutory nature conservation agencies and academics that there is much room for improvement of these models. For example, collision risk models are deterministic and rarely include variation in the input parameters such as bird density, or bird biometrics which are inherently variable, but instead use average values. Additionally, any uncertainty in these values is not expressed. Adopting a single best value for parameters may reduce complexity and increase the accessibility of results for decision-makers however it can be misleading because it ignores the range of consequences that are plausible. This project aims to i) review current models that are used to predict bird collision mortality caused by wind farm developments, ii) determine statistical methods suited to address any shortcomings of current models and then, using this information, iii) develop an updated model which incorporates variability and uncertainty. Reviewing current models and highlighting their strengths and weaknesses, as well as reviewing methods to incorporate variability and uncertainty will aid the development of a product, a collision risk model, which is fit for purpose. Development of the understanding of uncertainty in the outputs of collision risk models will be a key part of this project, and will be of direct benefit to industry, government advisors and regulators in the assessment and licensing processes for wind farm projects. The involvement of these parties will be vital in steering this project because any revision of a collision risk model has to function to better inform planning decisions for wind farm developments. To ensure that all relevant parties are involved, contribute and ultimately buy-in to the development of a new, updated model, there will be a workshop to discuss issues surrounding current practices to which developers, licensing authorities, statutory nature conservation bodies, academics and others will be invited. Also, to ensure the outputs of this project have impact and are used by the industry, the model and any documents produced will be made freely available and accessible through a dedicated webpage. Wind energy has an important role in meeting energy targets, so there is a clear need to ensure that decisions made through the planning processes use the best available information, data and models. Improved understanding of the risks of collision to birds - a key effect considered in ornithological impact assessments of wind farms - is thus vital.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016303/1
    Funder Contribution: 4,026,000 GBP

    This proposal is for a Doctoral Training Centre to provide a new generation of engineering leaders in Offshore & Marine Renewable Energy Structures. This is a unique opportunity for two internationally leading Universities to join together to provide an industrially-focussed centre of excellence in this pivotal subject area. The majority of informed and balanced views suggest approximately 180 TWh/year of offshore wind, ~300km of wave farms (19 TWh/year), 1,000 tidal stream turbines (6 TWh/year) and 3 small tidal range schemes (3 TWh/year) are desirable/achievable using David MacKay's UK DECC 2050 Pathways calculator. These together would represent 30% of predicted actual UK electricity demand. This would be a truly enormous renewable energy contribution to the UK electricity supply, given the predicted increase of electricity demand in the transport sector. The inclusion of onshore wind brings this figure closer to 38% of UK electricity by 2050. RenewablesUK predicts Britain has the opportunity to lead the world in developing the emerging marine energy industry with the sector having the potential to employ 10,000 people and generate revenues of nearly £4bn per year by 2020. The large scale development of offshore renewable energy (Wind, Wave and Tidal) represents one of the biggest opportunities for sustainable economic growth in the UK for a generation. The emerging offshore wind sector is however unlike the Oil & Gas industry in that structures are unmanned, fabricated in much larger volumes and the commercial reality is that the sector has to proactively take measures to further reduce CAPEX and OPEX. Support structures need to be structurally optimised and to avail of contemporary and emerging methodologies in structural integrity design and assessment. Current offshore design standards and practices are based on Offshore Oil & Gas experience which relates to unrepresentative target structural reliability, machine and structural loading characteristics and scaling issues particularly with respect to large diameter piled structural systems. To date Universities and the Industry have done a tremendous job to help device developers test and trial different concepts however the challenge now moves to the next stage to ensure these technologies can be manufactured in volume and deployed at the right cost including installation and maintenance over the full design life. This is a proposal to marry together Marine and Offshore Structures expertise with emerging large steel fabrication and welding/joining technologies to ensure graduates from the programme will have the prerequisite knowledge and experience of integrated structural systems to support the developing Offshore and Marine Renewable Energy sector. The Renewable Energy Marine Structures (REMS) Doctoral Centre CDT will embrace the full spectrum of Structural Analysis in the Marine Environment, Materials and Engineering Structural Integrity, Geotechnical Engineering, Foundation Design, Site Investigation, Soil-Structure Interaction, Inspection, Monitoring and NDT through to Environmental Impact and Quantitative Risk and Reliability Analysis so that the UK can lead the world-wide development of a new generation of marine structures and support systems for renewable energy. The Cranfield-Oxford partnership brings together an unrivalled team of internationally leading expertise in the design, manufacture, operation and maintenance of offshore structural systems and together with the industrial partnerships forged as part of this bid promises a truly world-leading centre in Marine Structures for the 21st Century.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.