
Electric Corby
Electric Corby
2 Projects, page 1 of 1
assignment_turned_in Project2020 - 2024Partners:ABB (Switzerland), Neath Port Talbot County, Scottish Power Energy Networks Holdings Limited, Power Transition Ltd, Scottish Power Energy Networks +13 partnersABB (Switzerland),Neath Port Talbot County,Scottish Power Energy Networks Holdings Limited,Power Transition Ltd,Scottish Power Energy Networks,Turbopowersystems,Cardiff University,ABB (United Kingdom),Scottish Power (United Kingdom),Power Transition Ltd,Siemens plc (UK),CARDIFF UNIVERSITY,Electric Corby,Electric Corby,SIEMENS PLC,Cardiff University,Neath Port Talbot County,Turbo Power Systems (TPS)Funder: UK Research and Innovation Project Code: EP/T021969/1Funder Contribution: 812,743 GBPUrban energy systems play a crucial role in the economic, social and environmental performance of large towns and cities. There are many dense newly built urban areas in China, with limited space for renewables but resilience and clean energy with less air pollution are key issues. The UK has legacy urban energy infrastructure and decarbonisation has priority. All these challenges will place unprecedented requirements on the load demand and distributed generation of urban energy systems. Although the driving forces and the objectives of development of urban energy systems are different in the UK and China, sustainable, cost effective and reliable urban power supply is one of the key research topics in both countries. This project will focus on novel methods for sustainable power supply, and will address the following two key research challenges, each of which has associated objectives. (1) Conventional control approaches for urban power supply do not address the emerging opportunities offered by increased measurement and control of urban energy systems, do not consider the flexibility provided by other energy vectors, and do not proactively and self-adaptively deal with the inevitable uncertainties associated with the fast-evolving urban energy systems; and (2) current urban energy systems rely on external bulk power supply with low resilience, i.e. interruption of external power supply will have catastrophic consequences, and supply restoration from such abnormal events will be difficult and time consuming. Coupling of different energy vectors to maximise the benefits of system integration must be coordinated with decoupling of electricity networks (create islandable urban energy systems) during abnormal events to increase the system resilience by maintaining energy supply to un-faulted urban areas. The objectives of the project are to combine research strengths of the leading institutions in the UK and China to respond to the above challenges and: (1) investigate multi-zone and multi-energy evolving system and control architecture of urban energy systems. Digital twins will be used to model and analyse each multi-energy system that is connected to the urban electric power network. Their system coupling and system-integration potential will be identified and flexibility provision quantified; (2) develop a novel method for both current situational awareness and future situational forecasting of an urban energy system, based on the digital twin of each multi-energy system and network measurements; (3) investigate smart interconnection of different urban zones using Soft Open Points in medium voltage (MV) electricity networks for accurate, real-time and resilient power flow control, and smart interconnection of multiple players using distributed ledger technology (DLT) for fully decentralised trust-based control; (4) develop a multi-energy control strategy for an urban energy system, which employs situational awareness and smart interconnection methods to significantly improve performance and resilience of the urban energy system by setting up coordinated control and energy islanding capability; and (5) validate the effectiveness of the proposed multi-energy control using hardware-in-the-loop (HiL) test facilities and selected case studies, and provide cost and benefit analysis (CBA). The MC2 project will provide strategic direction for the future of sustainable urban power supply in the 2030-2050 time frame and deliver methodologies and technologies of alternative network control in order to facilitate a cost effective evolution to a resilient, affordable, low carbon and even net-zero future. The complementary, cross-country expertise will allow us to undertake the challenging research with substantially reduced cost, time and effort. The two-nation cross-fertilisation will make sure that the value of our research is for both developed and developing nations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57fdcf2ba75a833b9b7e6e1380ac7c67&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57fdcf2ba75a833b9b7e6e1380ac7c67&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2024Partners:Active Building Centre, Dept for Sci, Innovation & Tech (DSIT), SRS Works, Cardiff University, SRS Works +15 partnersActive Building Centre,Dept for Sci, Innovation & Tech (DSIT),SRS Works,Cardiff University,SRS Works,Climespace,Electric Corby,Cardiff University,CARDIFF UNIVERSITY,Electric Corby,Active Building Centre,Climespace,Rotherham Hospital NHS Foundation Trust,Neath Port Talbot County,Rotherham Hospital NHS Foundation Trust,Dept for Business, Innovation and Skills,Star Refrigeration Ltd,Star Refrigeration Ltd,Neath Port Talbot County,Department for Business, Energy and Industrial StrategyFunder: UK Research and Innovation Project Code: EP/V042505/1Funder Contribution: 1,113,920 GBPWe are currently facing an unprecedented climate emergency threatening life on our planet. Limiting global surface temperature rise is key to ensure irreversible effects for nature and people are not triggered. For the UK, decarbonisation of the energy sector to mitigate climate change is a crucial ambition, becoming the first major economy to pass legislation to end its contribution to global warming by 2050 by reducing its carbon emissions to net-zero. Even though a significant emission reduction has been already achieved in the electric power sector, progress has been limited in other areas, such as heating (including space cooling), which accounts for over a third of UK emissions. Heating and cooling are central to our lives not only for comfort and daily activities, but also to facilitate productive workplaces and to run a variety of industrial processes. Decarbonising heating and cooling and reducing emissions from buildings are thus paramount to meet net-zero targets. Cooling decarbonisation has not previously received significant attention, but this is changing due to population increase and climate change. Summertime cooling of buildings is becoming increasingly important and consumer demand for greater comfort levels will also increase the energy used for cooling services. An increased requirement for cooling is anticipated, with the share of UK electricity used for cooling also expected to rise further, which could strain the electricity system. At the same time, summer electricity demand is changing with a surge in solar PV generation, causing concern for balancing the power system. Since cooling facilities are in general limited to building level, significant investments in cooling infrastructure and buildings are needed. Flex-Cool-Store brings together academics with complementary expertise on techno-economic, societal and policy aspects of electrical power supply and thermal energy systems. The main objective of this interdisciplinary project is to investigate the potential impacts of a growth in UK cooling demand and how this growth can be managed through proactive design and flexible operation of the cooling supply system and energy storage, and how the new demand can be served by an increasingly decarbonised electricity system. Underpinning this, public perception towards the adoption of cooling technologies within buildings and communities and consumer participation in flexibility provision from energy storage at household level will be explored via interviews and public workshops. Outcomes will be considered alongside pathways and policies associated with heat decarbonisation, and novel analysis using 'elite' interviews with policy makers will be conducted to consider the potential relationship between heat decarbonisation strategies, cooling and storage. This interdisciplinary approach will enable Flex-Cool-Store to address the issue of increasing demand for cooling and decarbonisation from multiple angles and to develop an even stronger evidence for best practice around buildings decarbonisation. Specific objectives of the project are: 1. Understanding cooling demand considering technical and socio-economic factors. Detailed studies will be conducted to understand how cooling demand might change over the next decades. 2. Quantifying the impacts of increased cooling demand on electricity networks. The extent to which supplying cooling will affect peak electricity demand will be quantified and its implications on network reinforcement will be investigated for selected case studies using data from real practical projects. 3. Investigating the flexibility provision to the electrical power system from integrating cooling technologies and storage. The interactions and synergies between cooling and electricity systems will be studied. How to adopt a coordinated approach for designing and operating energy systems of buildings so that the provision of flexibility can be maximised will be explored.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0083a5ad9b8a2e219f00ab9ca6549d08&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0083a5ad9b8a2e219f00ab9ca6549d08&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu