Powered by OpenAIRE graph
Found an issue? Give us feedback

Fraunhofer ISE

Fraunhofer ISE

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/X027511/1
    Funder Contribution: 731,756 GBP

    Today, mobile devices such as smartphones and wearables are usually powered by batteries, while a data connection to the internet is provided by radio frequency (RF) signals. The need for the daily charging of our mobile devices is considered a hurdle to scale the number of internet of things (IoT) connections and the large-scale introduction of new devices such as augmented and virtual reality (AR/VR) and industry 4.0 applications. At the same time, the demand for higher data rates and ultra-low latency data connections is set to increase in future sixth generation (6G) cellular networks. The GreenCom project will address both requirements jointly. We are developing optical wireless communication systems that achieve a 10 times higher data rate compared to current wireless systems, while the system harvests energy from the data link as well as the ambient light. The project will unlock new potentials for energy-efficient, ultra-high speed, and ultra-low latency wireless connectivity. The ambitious goals of this project are achieved through an international collaboration with the German Fraunhofer Institute for Solar Energy Systems (ISE) who are world-leading in the development of energy efficient photovoltaic (PV) cells. ISE will develop unique semiconductor devices for combined power harvesting and data reception with unprecedented photovoltaic conversion efficiency and digital data reception capability. The University of Strathclyde's LiFi Research and Development Centre (LRDC) will develop the communication techniques, algorithms and protocols to facilitate optimum energy harvesting and ultra-high data rates and ultra-low latency in a multiuser environment. Scalability of both harvested power and data rates will be achieved by creating parallel transmission links separated in space and by means of different wavelengths. This partnership will create new applications in the fields of future sustainable mobile wireless communications (including optical wireless fronthaul, optical wireless backhaul) as well as smart wireless devices for the Internet of Things (IoT), the Internet of Senses and Industry 4.0 applications, and thereby lay the foundation for a new research area. Joint experimentation within the project will push the performance boundaries of optical wireless multiuser links and will set a new benchmark for simultaneous harvested power and transmitted data rates with 1 W harvested power at 10 m distance and 10 Gb/s link data rate, respectively.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V038605/1
    Funder Contribution: 476,458 GBP

    Photovoltaic (PV) solar cells now generate a significant proportion of the world's electricity and have vast potential for further growth. PV is enormously important to the UK with >13.5 GW now installed here, and growth worldwide is forecast to be over tenfold in the next three decades. More than 90% of solar cells are produced from crystalline silicon, and costs have fallen to levels not previously thought possible (< 2.34 US cents/kWh). Other technologies have yet to gain industrial traction and commercial barriers to entry are becoming substantial. Silicon-based solar technology is hence likely to remain dominant and critical to the expansion of renewable energy in the coming decades. Its continuous advancement is essential to accelerate uptake of and impact from green electricity generation worldwide and for fulfilling the UK's obligations under the Paris Agreement. The passivated emitter and rear cells (PERC) architecture is standard for today's silicon solar cells. The PERC technology will reach its practical limits in the next 10 years, with a top forecast commercial efficiency of ~24%. Overcoming this efficiency boundary requires cell architectures that circumvent the limitations of PERC. This project aims to develop a new cell technology to supersede PERC in which the drawbacks of high temperature processing are avoided, the efficiency potential of a single junction is fully exploited, and a route to implement tandem and bifacial architectures is directly possible. This programme brings together teams at the Universities of Oxford and Warwick with world-leading expertise in silicon surface passivation, carrier lifetime, and impurity management for the development of PV devices. The aim is to conduct fundamental work necessary to facilitate a step-reduction in the cost per Watt of PV electricity, thus producing a disruptive change in the advancement of this important renewable energy industry. This project will develop a charged oxide inversion layer (COIL) solar cell by integrating advanced nanoscale thin-film materials to augment the PV potential of a silicon absorber. This novel cell architecture has the potential to overtake the current standard PERC devices, while providing a direct route to use in emerging selective contact, tandem, and bifacial designs. So far, the efficiency of an inversion layer architecture has been exploited only to a limited extent, e.g. in a 18% cell. The potential of the COIL cell extends well beyond this mark, and as high as 28% in a single-junction configuration could be achieved. This project will deliver the fundamental understanding necessary to unlock this potential, exploit the inversion layer concept by engineering highly charged dielectric thin-films, and use these films to produce a prototype cell device.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W03722X/1
    Funder Contribution: 2,177,760 GBP

    The IDEA Fellowship is a 5-year programme to pave the way for the UK's industrial decarbonisation and digitalisation, via emerging AI, digital transformations applied to fundamental electrochemical engineering research. Electrochemical engineering is at the heart of many key energy technologies for the 21st century such as H2 production, CO2 reduction, energy storage, etc. Further developments in all these areas require a better understanding of the electrode-electrolyte interfaces in the electrochemical systems because almost all critical phenomena occur at such interface, which eventually determine the kinetics, thermodynamics and long-term performance of the systems. Designing the next generation of electrochemical interfaces to fulfil future requirements is a common challenge for all types of electrochemical applications. Designing an electrochemical interface traditionally relies on high throughput screening experiments or simulations. Given the complex nature of the design space, it comes with no surprise that this brute-force approach is highly iterative with low success rates, which has become a common challenge faced by the electrochemical research community. The vision of the fellowship is to make a paradigm-shift in how future electrochemical interfaces can be designed, optimised and self-evolved throughout their entire life cycle via novel Explainable AI (XAI) and digital solutions. It will create an inverse design framework, where we use a set of desired performance indicators as input for the XAI models to generate electrochemical interface designs that satisfy the requirements, in a physically-meaningful way interpretable by us. The methodology, once developed, will tackle exemplar challenges of central importance to the net zero roadmap, which include improving current systems such as H2 production/fuel cell and CO2 reduction, but also developing new electrochemical systems which do not yet exist today at industrial scale such as N2 reduction and multi-ion energy storage.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.