
NEC UK Ltd
NEC UK Ltd
2 Projects, page 1 of 1
assignment_turned_in Project2014 - 2024Partners:DNA ELECTRONICS LTD, BAE Systems (UK), EMC Information Systems International, Formicary, Intel Corporation +47 partnersDNA ELECTRONICS LTD,BAE Systems (UK),EMC Information Systems International,Formicary,Intel Corporation,AMD Global,LMS International nv,Bae Systems Defence Ltd,Microsoft (United States),BlueBee Technologies,AMD (Advanced Micro Devices) UK,Dyson Limited,Codeplay Software,Codeplay Software Ltd,NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED,Cluster Technology Limited,Intel (Ireland),Siemens AG (International),Intel Corporation,BASF AG,Maxeler Technologies Ltd,Geomerics Ltd,Formicary,BASF AG (International),DNA Electronics,Siemens AG,DELL (Ireland),Imperial College London,BAE Systems (Sweden),Cluster Technology Limited,Microsoft Corporation (USA),The Mathworks Ltd,Dyson Appliances Ltd,Imagination Technologies (United Kingdom),Imagination Technologies Ltd UK,Maxeler Technologies (United Kingdom),Realeyes UK,ARM Ltd,Realeyes UK,BlueBee Technologies,NEC UK Ltd,ABB (Switzerland),TOUMAZ,BAE Systems (United Kingdom),National Instruments Corp (UK) Ltd,Toumaz Technology Ltd,LMS International nv,SAP (UK) Ltd,Imagination Technologies (United Kingdom),ARM Ltd,The Mathworks Ltd,Intel (United States)Funder: UK Research and Innovation Project Code: EP/L016796/1Funder Contribution: 4,099,020 GBPHigh Performance Embedded and Distributed Systems (HiPEDS), ranging from implantable smart sensors to secure cloud service providers, offer exciting benefits to society and great opportunities for wealth creation. Although currently UK is the world leader for many technologies underpinning such systems, there is a major threat which comes from the need not only to develop good solutions for sharply focused problems, but also to embed such solutions into complex systems with many diverse aspects, such as power minimisation, performance optimisation, digital and analogue circuitry, security, dependability, analysis and verification. The narrow focus of conventional UK PhD programmes cannot bridge the skills gap that would address this threat to the UK's leadership of HiPEDS. The proposed Centre for Doctoral Training (CDT) aims to train a new generation of leaders with a systems perspective who can transform research and industry involving HiPEDS. The CDT provides a structured and vibrant training programme to train PhD students to gain expertise in a broad range of system issues, to integrate and innovate across multiple layers of the system development stack, to maximise the impact of their work, and to acquire creativity, communication, and entrepreneurial skills. The taught programme comprises a series of modules that combine technical training with group projects addressing team skills and system integration issues. Additional courses and events are designed to cover students' personal development and career needs. Such a comprehensive programme is based on aligning the research-oriented elements of the training programme, an industrial internship, and rigorous doctoral research. Our focus in this CDT is on applying two cross-layer research themes: design and optimisation, and analysis and verification, to three key application areas: healthcare systems, smart cities, and the information society. Healthcare systems cover implantable and wearable sensors and their operation as an on-body system, interactions with hospital and primary care systems and medical personnel, and medical imaging and robotic surgery systems. Smart cities cover infrastructure monitoring and actuation components, including smart utilities and smart grid at unprecedented scales. Information society covers technologies for extracting, processing and distributing information for societal benefits; they include many-core and reconfigurable systems targeting a wide range of applications, from vision-based domestic appliances to public and private cloud systems for finance, social networking, and various web services. Graduates from this CDT will be aware of the challenges faced by industry and their impact. Through their broad and deep training, they will be able to address the disconnect between research prototypes and production environments, evaluate research results in realistic situations, assess design tradeoffs based on both practical constraints and theoretical models, and provide rapid translation of promising ideas into production environments. They will have the appropriate systems perspective as well as the vision and skills to become leaders in their field, capable of world-class research and its exploitation to become a global commercial success.
more_vert assignment_turned_in Project2022 - 2026Partners:British Telecommunications plc, THALES UK LIMITED, British Telecom, SinoWave, SinoWave +13 partnersBritish Telecommunications plc,THALES UK LIMITED,British Telecom,SinoWave,SinoWave,BT Group (United Kingdom),Plextek Ltd,Plextek Ltd,Thales Aerospace,Filtronic Plc,NEC UK Ltd,Qioptiq Ltd,Durham University,Durham University,Thales UK Limited,QinetiQ,Filtronic plc,Filtronic Compound Semiconductors LtdFunder: UK Research and Innovation Project Code: EP/W027151/1Funder Contribution: 786,349 GBPAs mobile radio systems developed, their operating frequency increased to the millimeter (mm) wave band (> 30 GHz) first used in the fifth-generation mobile radio network (5G). Now, as we look beyond 5G, higher frequencies are being considered with increased interest in the 140-170 GHz (termed D-band) and beyond (275 GHz band). At these frequencies, where there is plenty of available spectrum to satisfy the spectrum hungry applications of wireless systems, new designs are required, with little work done in this area world-wide. This proposal brings the complementary expertise of three world leading UK research groups, to research, design and experimentally demonstrate systems working at these frequencies, in an integrative and holistic fashion. For such work, there are three key challenges relating to the radio channel and the signal and system design. Challenge 1: to design wireless communication systems, it is paramount to have a verifiable model of the physical propagation channel by collecting measurement data from a specialist and bespoke designed equipment termed "channel sounder", which sends signals over the air and the receiver measures these signals after propagation. Such a model depends on several physical factors, but mainly the transmission signal parameters e.g. the frequency of transmission, the bandwidth of the signal, and the propagation channel physical parameters, such as the channel size and environment and whether it is indoors or outdoors, environmental factors, presence of obstacles, water moisture, pollution and other factors. Professor Salous and her group at Durham has been building channel sounders for over thirty years and the models she has developed are considered amongst the best in the world, used by regulators, industry and the United Nations through the International Telecommunications Union, (ITU). Professor Salous proposes to design and test new channel sounding in the D Band and at the higher 275 GHz band. These will be unique sounders and the aim is to develop unique models and set the standards for future generation wireless systems. The models will be verified in a practical setting through collaboration with the teams at QMUL and UCL. Challenge 2: The transmission of information at high frequencies requires specialist circuit and equipment design. Whilst there are several circuits for such signals, there are few antennas that can transmit and receive the signals and process them spatially. Professor Yang Hao at QMUL, who has been designing antennas for high frequencies for nearly three decades, will design specialist antennas, to be manufactured using simple 3D printing processes, to integrate to the system designed at Durham for full channel measurements. The designs will be optimized with consultation between the teams and taking the channel models into account. The outcome is a system with multiple antennas that can focus the transmission beams and change their shape and direction (a process termed beam forming) so that a system can be constructed that will fully utilize the benefits of the high frequencies and link to signals addressed by the UCL team. Challenge 3: for the past 20 years the UCL team, led by Professor Darwazeh, has designed and demonstrated the use of specialist signals for mobile and wireless systems that can maximise the amount of information while minimizing the energy required for good signal transmission; these processes are termed spectral and energy efficiencies. UCL will design spectrally and energy efficient signals, based on the D Band channel models derived at Durham and suitable for transmission using the antennas designed by QMUL; the outcome will be a complete transmission system at D Band with projected bit rates beyond 50 Gbit/s; nearly an order of magnitude beyond what can be achieved using 5G systems. The three teams bring strong industrial support to achieve what is predicted to be a world first and which brings interest from all sectors.
more_vert